From 0f0e4be7dc746e2676db33f850bbeddf239eaec8 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Fri, 13 Oct 2023 00:40:37 +0200 Subject: Add sup --- backends/lean/Base/IList/IList.lean | 57 ++++++++++++++++++++++++++++++++++++- 1 file changed, 56 insertions(+), 1 deletion(-) (limited to 'backends/lean/Base/IList') diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index 0b483e90..f10ec4e7 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -112,7 +112,19 @@ def pairwise_rel section Lemmas -variable {α : Type u} +variable {α : Type u} + +def ireplicate {α : Type u} (i : ℤ) (x : α) : List α := + if i ≤ 0 then [] + else x :: ireplicate (i - 1) x +termination_by ireplicate i x => i.toNat +decreasing_by + simp_wf + -- TODO: simplify this kind of proofs + simp at * + have : 0 ≤ i := by linarith + have : 1 ≤ i := by linarith + simp [Int.toNat_sub_of_le, *] @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] @@ -129,6 +141,10 @@ variable {α : Type u} @[simp] theorem slice_nil : slice i j ([] : List α) = [] := by simp [slice] @[simp] theorem slice_zero : slice 0 0 (ls : List α) = [] := by cases ls <;> simp [slice] +@[simp] theorem ireplicate_zero : ireplicate 0 x = [] := by rw [ireplicate]; simp +@[simp] theorem ireplicate_nzero_cons (hne : 0 < i) : ireplicate i x = x :: ireplicate (i - 1) x := by + rw [ireplicate]; simp [*]; intro; linarith + @[simp] theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl := match tl with @@ -144,6 +160,45 @@ theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : s conv at this => lhs; simp [slice, *] simp [*, slice] +@[simp] +theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : + ireplicate l x = replicate l.toNat x := + if hz: l = 0 then by + simp [*] + else by + have : 0 < l := by int_tac + have hr := ireplicate_replicate (l - 1) x (by int_tac) + simp [*] + have hl : l.toNat = .succ (l.toNat - 1) := by + cases hl: l.toNat <;> simp_all + conv => rhs; rw[hl] +termination_by ireplicate_replicate l x h => l.toNat +decreasing_by + simp_wf + -- TODO: simplify this kind of proofs + simp at * + have : 0 ≤ l := by linarith + have : 1 ≤ l := by linarith + simp [Int.toNat_sub_of_le, *] + +@[simp] +theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : + (ireplicate l x).len = l := + if hz: l = 0 then by + simp [*] + else by + have : 0 < l := by int_tac + have hr := ireplicate_len (l - 1) x (by int_tac) + simp [*] +termination_by ireplicate_len l x h => l.toNat +decreasing_by + simp_wf + -- TODO: simplify this kind of proofs + simp at * + have : 0 ≤ l := by linarith + have : 1 ≤ l := by linarith + simp [Int.toNat_sub_of_le, *] + theorem len_eq_length (ls : List α) : ls.len = ls.length := by induction ls . rfl -- cgit v1.2.3 From 584726e9c4e4378129a35f6cfbbbf934448d10a9 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Tue, 17 Oct 2023 09:36:55 +0200 Subject: Implement tactics for termination proofs which involve arithmetic --- backends/lean/Base/IList/IList.lean | 24 +++--------------------- 1 file changed, 3 insertions(+), 21 deletions(-) (limited to 'backends/lean/Base/IList') diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index 79de93d5..f71f2de2 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -118,13 +118,7 @@ def ireplicate {α : Type u} (i : ℤ) (x : α) : List α := if i ≤ 0 then [] else x :: ireplicate (i - 1) x termination_by ireplicate i x => i.toNat -decreasing_by - simp_wf - -- TODO: simplify this kind of proofs - simp at * - have : 0 ≤ i := by linarith - have : 1 ≤ i := by linarith - simp [Int.toNat_sub_of_le, *] +decreasing_by int_decr_tac @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] @@ -173,13 +167,7 @@ theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : cases hl: l.toNat <;> simp_all conv => rhs; rw[hl] termination_by ireplicate_replicate l x h => l.toNat -decreasing_by - simp_wf - -- TODO: simplify this kind of proofs - simp at * - have : 0 ≤ l := by linarith - have : 1 ≤ l := by linarith - simp [Int.toNat_sub_of_le, *] +decreasing_by int_decr_tac @[simp] theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : @@ -191,13 +179,7 @@ theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : have hr := ireplicate_len (l - 1) x (by int_tac) simp [*] termination_by ireplicate_len l x h => l.toNat -decreasing_by - simp_wf - -- TODO: simplify this kind of proofs - simp at * - have : 0 ≤ l := by linarith - have : 1 ≤ l := by linarith - simp [Int.toNat_sub_of_le, *] +decreasing_by int_decr_tac theorem len_eq_length (ls : List α) : ls.len = ls.length := by induction ls -- cgit v1.2.3