From 876137dff361620d8ade1a4ee94fa9274df0bdc6 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Tue, 25 Jul 2023 14:08:44 +0200 Subject: Improve int_tac and scalar_tac --- backends/lean/Base/Arith/Int.lean | 63 ++++++++++++++++++++++++++++++++---- backends/lean/Base/Arith/Scalar.lean | 6 ++-- 2 files changed, 59 insertions(+), 10 deletions(-) (limited to 'backends/lean/Base/Arith') diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean index fa957293..3415866e 100644 --- a/backends/lean/Base/Arith/Int.lean +++ b/backends/lean/Base/Arith/Int.lean @@ -24,12 +24,29 @@ class PropHasImp (x : Prop) where concl : Prop prop : x → concl +instance (p : Int → Prop) : HasIntProp (Subtype p) where + prop_ty := λ x => p x + prop := λ x => x.property + -- This also works for `x ≠ y` because this expression reduces to `¬ x = y` -- and `Ne` is marked as `reducible` instance (x y : Int) : PropHasImp (¬ x = y) where concl := x < y ∨ x > y prop := λ (h:x ≠ y) => ne_is_lt_or_gt h +-- Check if a proposition is a linear integer proposition. +-- We notably use this to check the goals. +class IsLinearIntProp (x : Prop) where + +instance (x y : Int) : IsLinearIntProp (x < y) where +instance (x y : Int) : IsLinearIntProp (x > y) where +instance (x y : Int) : IsLinearIntProp (x ≤ y) where +instance (x y : Int) : IsLinearIntProp (x ≥ y) where +instance (x y : Int) : IsLinearIntProp (x ≥ y) where +/- It seems we don't need to do any special preprocessing when the *goal* + has the following shape - I guess `linarith` automatically calls `intro` -/ +instance (x y : Int) : IsLinearIntProp (¬ x = y) where + open Lean Lean.Elab Lean.Meta -- Explore a term by decomposing the applications (we explore the applied @@ -189,14 +206,27 @@ def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM U elab "int_tac_preprocess" : tactic => intTacPreprocess (do pure ()) -def intTac (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do +-- Check if the goal is a linear arithmetic goal +def goalIsLinearInt : Tactic.TacticM Bool := do + Tactic.withMainContext do + let gty ← Tactic.getMainTarget + match ← trySynthInstance (← mkAppM ``IsLinearIntProp #[gty]) with + | .some _ => pure true + | _ => pure false + +def intTac (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do Tactic.withMainContext do Tactic.focus do + let g ← Tactic.getMainGoal + trace[Arith] "Original goal: {g}" + -- Introduce all the universally quantified variables (includes the assumptions) + let (_, g) ← g.intros + Tactic.setGoals [g] -- Preprocess - wondering if we should do this before or after splitting -- the goal. I think before leads to a smaller proof term? Tactic.allGoals (intTacPreprocess extraPreprocess) -- Split the conjunctions in the goal - Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) + if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) -- Call linarith let linarith := do let cfg : Linarith.LinarithConfig := { @@ -204,10 +234,25 @@ def intTac (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do splitNe := false } Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg - Tactic.allGoals linarith - -elab "int_tac" : tactic => - intTac (do pure ()) + Tactic.allGoals do + -- We check if the goal is a linear arithmetic goal: if yes, we directly + -- call linarith, otherwise we first apply exfalso (we do this because + -- linarith is too general and sometimes fails to do this correctly). + if ← goalIsLinearInt then do + trace[Arith] "linarith goal: {← Tactic.getMainGoal}" + linarith + else do + let g ← Tactic.getMainGoal + let gs ← g.apply (Expr.const ``False.elim [.zero]) + let goals ← Tactic.getGoals + Tactic.setGoals (gs ++ goals) + Tactic.allGoals do + trace[Arith] "linarith goal: {← Tactic.getMainGoal}" + linarith + +elab "int_tac" args:(" split_goal"?): tactic => + let split := args.raw.getArgs.size > 0 + intTac split (do pure ()) example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac_preprocess @@ -219,10 +264,14 @@ example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by -- Checking that things append correctly when there are several disjunctions example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by - int_tac + int_tac split_goal -- Checking that things append correctly when there are several disjunctions example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by + int_tac split_goal + +-- Checking that we can prove exfalso +example (a : Prop) (x : Int) (h0: 0 < x) (h1: x < 0) : a := by int_tac end Arith diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean index f8903ecf..a56ea08b 100644 --- a/backends/lean/Base/Arith/Scalar.lean +++ b/backends/lean/Base/Arith/Scalar.lean @@ -28,11 +28,11 @@ elab "scalar_tac_preprocess" : tactic => intTacPreprocess scalarTacExtraPreprocess -- A tactic to solve linear arithmetic goals in the presence of scalars -def scalarTac : Tactic.TacticM Unit := do - intTac scalarTacExtraPreprocess +def scalarTac (splitGoalConjs : Bool) : Tactic.TacticM Unit := do + intTac splitGoalConjs scalarTacExtraPreprocess elab "scalar_tac" : tactic => - scalarTac + scalarTac false instance (ty : ScalarTy) : HasIntProp (Scalar ty) where -- prop_ty is inferred -- cgit v1.2.3