From 8144c39f4d37aa1fa14a8a061eb7ed60e153fb4c Mon Sep 17 00:00:00 2001 From: Son HO Date: Sat, 22 Jun 2024 13:22:32 +0200 Subject: Improve `scalar_tac` and `scalar_decr_tac` (#256) * Fix an issue in a proof of the hashmap * Improve scalar_decr_tac * Improve the error message of scalar_tac and add the missing Termination.lean--- backends/lean/Base/Arith/Int.lean | 19 +++++++++++++------ backends/lean/Base/Arith/Scalar.lean | 11 ----------- 2 files changed, 13 insertions(+), 17 deletions(-) (limited to 'backends/lean/Base/Arith') diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean index b1927cfd..958e31c9 100644 --- a/backends/lean/Base/Arith/Int.lean +++ b/backends/lean/Base/Arith/Int.lean @@ -106,19 +106,26 @@ def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.Tact Tactic.withMainContext do -- Get the local context let ctx ← Lean.MonadLCtx.getLCtx - -- Just a matter of precaution - let ctx ← instantiateLCtxMVars ctx -- Initialize the hashset let hs := HashSet.empty -- Explore the declarations let decls ← ctx.getDecls let hs ← decls.foldlM (fun hs d => do -- Collect instances over all subexpressions in the context. - -- Note that we explore the *type* of the local declarations: if we have + -- Note that if the local declaration is + -- Note that we explore the *type* of propositions: if we have -- for instance `h : A ∧ B` in the context, the expression itself is simply -- `h`; the information we are interested in is its type. - let ty ← Lean.Meta.inferType d.toExpr - collectInstances k hs ty + -- However, if the decl is not a proposition, we explore it directly. + -- For instance: `x : U32` + -- TODO: case disjunction on whether the local decl is a Prop or not. If prop, + -- we need to explore its type. + let d := d.toExpr + if d.isProp then + collectInstances k hs d + else + let ty ← Lean.Meta.inferType d + collectInstances k hs ty ) hs -- Also explore the goal collectInstances k hs (← Tactic.getMainTarget) @@ -296,7 +303,7 @@ def intTac (tacName : String) (splitGoalConjs : Bool) (extraPreprocess : Tactic try do Tactic.Omega.omegaTactic {} catch _ => let g ← Tactic.getMainGoal - throwError "{tacName} failed to prove the goal:\n{g}" + throwError "{tacName} failed to prove the goal below.\n\nNote that {tacName} is equivalent to:\n {tacName}_preprocess; omega\n\nGoal: \n{g}" elab "int_tac" args:(" split_goal"?): tactic => let split := args.raw.getArgs.size > 0 diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean index 31110b95..a36aadf3 100644 --- a/backends/lean/Base/Arith/Scalar.lean +++ b/backends/lean/Base/Arith/Scalar.lean @@ -44,17 +44,6 @@ def scalarTac (splitGoalConjs : Bool) : Tactic.TacticM Unit := do elab "scalar_tac" : tactic => scalarTac false --- For termination proofs -syntax "scalar_decr_tac" : tactic -macro_rules - | `(tactic| scalar_decr_tac) => - `(tactic| - simp_wf; - -- TODO: don't use a macro (namespace problems) - (first | apply Arith.to_int_to_nat_lt - | apply Arith.to_int_sub_to_nat_lt) <;> - simp_all <;> scalar_tac) - instance (ty : ScalarTy) : HasIntProp (Scalar ty) where -- prop_ty is inferred prop := λ x => And.intro x.hmin x.hmax -- cgit v1.2.3