From 3e8060b5501ec83940a4309389a68898df26ebd0 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Mon, 17 Jul 2023 23:37:31 +0200 Subject: Reorganize the Lean backend --- backends/lean/Base/Arith/Int.lean | 236 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 236 insertions(+) create mode 100644 backends/lean/Base/Arith/Int.lean (limited to 'backends/lean/Base/Arith/Int.lean') diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean new file mode 100644 index 00000000..5f00ab52 --- /dev/null +++ b/backends/lean/Base/Arith/Int.lean @@ -0,0 +1,236 @@ +/- This file contains tactics to solve arithmetic goals -/ + +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd +import Mathlib.Tactic.Linarith +-- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet +--import Mathlib.Tactic.Omega +import Base.Utils +import Base.Arith.Base + +namespace Arith + +open Utils + +-- Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)` +-- but the lookup didn't work +class HasIntProp (a : Sort u) where + prop_ty : a → Prop + prop : ∀ x:a, prop_ty x + +class PropHasImp (x : Prop) where + concl : Prop + prop : x → concl + +-- This also works for `x ≠ y` because this expression reduces to `¬ x = y` +-- and `Ne` is marked as `reducible` +instance (x y : Int) : PropHasImp (¬ x = y) where + concl := x < y ∨ x > y + prop := λ (h:x ≠ y) => ne_is_lt_or_gt h + +open Lean Lean.Elab Lean.Meta + +-- Small utility: print all the declarations in the context +elab "print_all_decls" : tactic => do + let ctx ← Lean.MonadLCtx.getLCtx + for decl in ← ctx.getDecls do + let ty ← Lean.Meta.inferType decl.toExpr + logInfo m!"{decl.toExpr} : {ty}" + pure () + +-- Explore a term by decomposing the applications (we explore the applied +-- functions and their arguments, but ignore lambdas, forall, etc. - +-- should we go inside?). +partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do + -- We do it in a very simpler manner: we deconstruct applications, + -- and recursively explore the sub-expressions. Note that we do + -- not go inside foralls and abstractions (should we?). + e.withApp fun f args => do + let s ← k s f + args.foldlM (foldTermApps k) s + +-- Provided a function `k` which lookups type class instances on an expression, +-- collect all the instances lookuped by applying `k` on the sub-expressions of `e`. +def collectInstances + (k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do + let k s e := do + match ← k e with + | none => pure s + | some i => pure (s.insert i) + foldTermApps k s e + +-- Similar to `collectInstances`, but explores all the local declarations in the +-- main context. +def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do + Tactic.withMainContext do + -- Get the local context + let ctx ← Lean.MonadLCtx.getLCtx + -- Just a matter of precaution + let ctx ← instantiateLCtxMVars ctx + -- Initialize the hashset + let hs := HashSet.empty + -- Explore the declarations + let decls ← ctx.getDecls + decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs + +-- Helper +def lookupProp (fName : String) (className : Name) (e : Expr) : MetaM (Option Expr) := do + trace[Arith] fName + -- TODO: do we need Lean.observing? + -- This actually eliminates the error messages + Lean.observing? do + trace[Arith] m!"{fName}: observing" + let ty ← Lean.Meta.inferType e + let hasProp ← mkAppM className #[ty] + let hasPropInst ← trySynthInstance hasProp + match hasPropInst with + | LOption.some i => + trace[Arith] "Found {fName} instance" + let i_prop ← mkProjection i (Name.mkSimple "prop") + some (← mkAppM' i_prop #[e]) + | _ => none + +-- Return an instance of `HasIntProp` for `e` if it has some +def lookupHasIntProp (e : Expr) : MetaM (Option Expr) := + lookupProp "lookupHasIntProp" ``HasIntProp e + +-- Collect the instances of `HasIntProp` for the subexpressions in the context +def collectHasIntPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do + collectInstancesFromMainCtx lookupHasIntProp + +-- Return an instance of `PropHasImp` for `e` if it has some +def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do + trace[Arith] "lookupPropHasImp" + -- TODO: do we need Lean.observing? + -- This actually eliminates the error messages + Lean.observing? do + trace[Arith] "lookupPropHasImp: observing" + let ty ← Lean.Meta.inferType e + trace[Arith] "lookupPropHasImp: ty: {ty}" + let cl ← mkAppM ``PropHasImp #[ty] + let inst ← trySynthInstance cl + match inst with + | LOption.some i => + trace[Arith] "Found PropHasImp instance" + let i_prop ← mkProjection i (Name.mkSimple "prop") + some (← mkAppM' i_prop #[e]) + | _ => none + +-- Collect the instances of `PropHasImp` for the subexpressions in the context +def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do + collectInstancesFromMainCtx lookupPropHasImp + +elab "display_prop_has_imp_instances" : tactic => do + trace[Arith] "Displaying the PropHasImp instances" + let hs ← collectPropHasImpInstancesFromMainCtx + hs.forM fun e => do + trace[Arith] "+ PropHasImp instance: {e}" + +example (x y : Int) (_ : x ≠ y) (_ : ¬ x = y) : True := by + display_prop_has_imp_instances + simp + +-- Lookup instances in a context and introduce them with additional declarations. +def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do + let hs ← collectInstancesFromMainCtx lookup + hs.toArray.mapM fun e => do + let type ← inferType e + let name ← mkFreshUserName `h + -- Add a declaration + let nval ← Utils.addDeclTac name e type (asLet := false) + -- Simplify to unfold the declaration to unfold (i.e., the projector) + Utils.simpAt [declToUnfold] [] [] (Tactic.Location.targets #[mkIdent name] false) + -- Return the new value + pure nval + +def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do + trace[Arith] "Introducing the HasIntProp instances" + introInstances ``HasIntProp.prop_ty lookupHasIntProp + +-- Lookup the instances of `HasIntProp for all the sub-expressions in the context, +-- and introduce the corresponding assumptions +elab "intro_has_int_prop_instances" : tactic => do + let _ ← introHasIntPropInstances + +-- Lookup the instances of `PropHasImp for all the sub-expressions in the context, +-- and introduce the corresponding assumptions +elab "intro_prop_has_imp_instances" : tactic => do + trace[Arith] "Introducing the PropHasImp instances" + let _ ← introInstances ``PropHasImp.concl lookupPropHasImp + +example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by + intro_prop_has_imp_instances + rename_i h + split_disj h + . linarith + . linarith + +/- Boosting a bit the linarith tac. + + We do the following: + - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we + introduce two goals with the assumptions `x < y` and `x > y` + TODO: we could create a PR for mathlib. + -/ +def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do + Tactic.withMainContext do + -- Lookup the instances of PropHasImp (this is how we detect assumptions + -- of the proper shape), introduce assumptions in the context and split + -- on those + -- TODO: get rid of the assumptions that we split + let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit := + match asms with + | [] => pure () + | asm :: asms => + let k := splitOnAsms asms + Utils.splitDisjTac asm k k + -- Introduce the scalar bounds + let _ ← introHasIntPropInstances + -- Extra preprocessing, before we split on the disjunctions + extraPreprocess + -- Split + let asms ← introInstances ``PropHasImp.concl lookupPropHasImp + splitOnAsms asms.toList + +elab "int_tac_preprocess" : tactic => + intTacPreprocess (do pure ()) + +def intTac (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do + Tactic.withMainContext do + Tactic.focus do + -- Preprocess - wondering if we should do this before or after splitting + -- the goal. I think before leads to a smaller proof term? + Tactic.allGoals (intTacPreprocess extraPreprocess) + -- Split the conjunctions in the goal + Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) + -- Call linarith + let linarith := + let cfg : Linarith.LinarithConfig := { + -- We do this with our custom preprocessing + splitNe := false + } + Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg + Tactic.allGoals linarith + +elab "int_tac" : tactic => + intTac (do pure ()) + +example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by + int_tac_preprocess + linarith + linarith + +example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by + int_tac + +-- Checking that things append correctly when there are several disjunctions +example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by + int_tac + +-- Checking that things append correctly when there are several disjunctions +example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by + int_tac + +end Arith -- cgit v1.2.3