From 97604d14f467458240732a4c0a733d381d72fbbe Mon Sep 17 00:00:00 2001 From: Son Ho Date: Thu, 11 May 2023 12:34:14 +0200 Subject: Start working on more general fixed-point combinators --- backends/hol4/divDefProto2Script.sml | 678 +++++++++++++++++++++++++++++++++++ 1 file changed, 678 insertions(+) create mode 100644 backends/hol4/divDefProto2Script.sml (limited to 'backends/hol4/divDefProto2Script.sml') diff --git a/backends/hol4/divDefProto2Script.sml b/backends/hol4/divDefProto2Script.sml new file mode 100644 index 00000000..985b930f --- /dev/null +++ b/backends/hol4/divDefProto2Script.sml @@ -0,0 +1,678 @@ +(* Prototype: divDefLib but with general combinators *) + +open HolKernel boolLib bossLib Parse +open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory + +open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory +open primitivesLib + +val _ = new_theory "divDefProto2" + + +(* + * Test with a general validity predicate. + * + * TODO: this works! Cleanup. + *) +val fix_fuel_def = Define ‘ + (fix_fuel (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = Diverge) ∧ + (fix_fuel (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = f (fix_fuel n f) x) +’ + +val fix_fuel_P_def = Define ‘ + fix_fuel_P f x n = ~(is_diverge (fix_fuel n f x)) +’ + +val fix_def = Define ‘ + fix (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = + if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge +’ + +val is_valid_fp_body_def = Define ‘ + (is_valid_fp_body (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) = F) ∧ + + (is_valid_fp_body (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) = + ∀x. (∀g h. f g x = f h x) ∨ + (∃ h y. is_valid_fp_body n h ∧ + ∀g. f g x = do z <- g y; h g z od)) +’ + +(* Auxiliary lemma. + We generalize the goal of fix_fuel_mono in the case the fuel is non-empty + (this allows us to unfold definitions like ‘fix_fuel’ once, and reveal + a first intermediate function). + + Important: the structure of the proof is induction over ‘n’ then ‘N’. + *) +Theorem fix_fuel_mono_aux: + ∀n. + ∀N M g f. is_valid_fp_body M f ⇒ + is_valid_fp_body N g ⇒ + ∀x. ~(is_diverge (g (fix_fuel n f) x)) ⇒ + ∀m. n ≤ m ⇒ + g (fix_fuel n f) x = g (fix_fuel m f) x +Proof + Induct_on ‘n’ >> + Induct_on ‘N’ >- fs [is_valid_fp_body_def] + >-( + rw [] >> + fs [is_valid_fp_body_def, is_diverge_def] >> + first_x_assum (qspec_assume ‘x’) >> + rw [] + >-((* Case 1: the continuation doesn't matter *) fs []) >> + (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) + (* Instantiate the validity property with the different continuations *) + first_assum (qspec_assume ‘fix_fuel n f’) >> + first_assum (qspec_assume ‘fix_fuel n' f’) >> + fs [] >> + ntac 3 (pop_assum ignore_tac) >> + fs [bind_def] >> + fs [fix_fuel_def]) + >-(fs [is_valid_fp_body_def]) >> + rw [] >> + qpat_assum ‘is_valid_fp_body (SUC N) g’ mp_tac >> + pure_rewrite_tac [is_valid_fp_body_def] >> + fs [is_diverge_def] >> + rw [] >> + first_x_assum (qspec_assume ‘x’) >> + rw [] + >-((* Case 1: the continuation doesn't matter *) fs []) >> + (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) + (* Use the validity property with the different continuations *) + fs [] >> pop_assum ignore_tac >> + fs [bind_def, fix_fuel_def] >> + Cases_on ‘m’ >- int_tac >> + fs [fix_fuel_def] >> + (* *) + last_x_assum (qspecl_assume [‘M’, ‘M’, ‘f’, ‘f’]) >> + gvs [] >> + first_x_assum (qspec_assume ‘y’) >> + Cases_on ‘f (fix_fuel n f) y’ >> fs [] >> + first_x_assum (qspec_assume ‘n'’) >> gvs [] >> Cases_on ‘f (fix_fuel n' f) y’ >> fs [] >> + (* *) + first_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >> + gvs [] +QED + +Theorem fix_fuel_mono: + ∀N f. is_valid_fp_body N f ⇒ + ∀n x. fix_fuel_P f x n ⇒ + ∀ m. n ≤ m ⇒ + fix_fuel n f x = fix_fuel m f x +Proof + rw [] >> + Cases_on ‘n’ + >-(fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >> + fs [fix_fuel_P_def, fix_fuel_def] >> rw [] >> + qspecl_assume [‘n'’, ‘N’, ‘N’, ‘f’, ‘f’] fix_fuel_mono_aux >> + Cases_on ‘m’ >- fs [] >> + gvs [fix_fuel_def] +QED + +(* TODO: remove? *) +Theorem fix_fuel_mono_least: + ∀N f. is_valid_fp_body N f ⇒ + ∀n x. fix_fuel_P f x n ⇒ + fix_fuel n f x = fix_fuel ($LEAST (fix_fuel_P f x)) f x +Proof + rw [] >> + pure_once_rewrite_tac [EQ_SYM_EQ] >> + irule fix_fuel_mono >> fs [] >> + (* Use the "fundamental" property about $LEAST *) + qspec_assume ‘fix_fuel_P f x’ whileTheory.LEAST_EXISTS_IMP >> + (* Prove the premise *) + pop_assum sg_premise_tac >- metis_tac [] >> fs [] >> + conj_tac + >- (spose_not_then assume_tac >> fs [not_le_eq_gt]) >> + metis_tac [] +QED + +Theorem fix_fuel_eq_fix: + ∀N f. is_valid_fp_body N f ⇒ + ∀n x. fix_fuel_P f x n ⇒ + fix_fuel n f x = fix f x +Proof + fs [fix_def] >> + rw [] >> + imp_res_tac fix_fuel_mono_least >> + fs [fix_fuel_P_def, is_diverge_def] >> + case_tac >> fs [] +QED + +Theorem fix_fuel_P_least: + ∀f n x. fix_fuel n f x ≠ Diverge ⇒ fix_fuel_P f x ($LEAST (fix_fuel_P f x)) +Proof + rw [] >> + qspec_assume ‘fix_fuel_P f x’ whileTheory.LEAST_EXISTS_IMP >> + (* Prove the premise *) + pop_assum sg_premise_tac + >-(fs [fix_fuel_P_def, is_diverge_def] >> qexists ‘n’ >> fs [] >> case_tac >> fs []) >> + rw [] +QED + +(* If ‘g (fix f) x’ doesn't diverge, we can exhibit some fuel *) +Theorem fix_not_diverge_implies_fix_fuel_aux: + ∀N M g f. is_valid_fp_body M f ⇒ + is_valid_fp_body N g ⇒ + ∀x. g (fix f) x ≠ Diverge ⇒ + ∃n. g (fix f) x = g (fix_fuel n f) x ∧ + ∀m. n ≤ m ⇒ g (fix_fuel m f) x = g (fix_fuel n f) x +Proof + Induct_on ‘N’ + >-(fs [is_valid_fp_body_def]) >> + rw [is_valid_fp_body_def] >> + first_x_assum (qspec_assume ‘x’) >> rw [] + >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >> + (* Use the validity hypothesis *) + fs [] >> pop_assum ignore_tac >> + (* Use the induction hypothesis *) + last_x_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >> gvs [] >> + (* Case disjunction on ‘fix f ÿ’*) + Cases_on ‘fix f y’ >> fs [bind_def] >~ [‘fix f y = Fail _’] + >-( + (* Fail case: easy, the call to ‘h’ is ignored *) + fs [fix_def] >> pop_assum mp_tac >> rw [] >> + qexists ‘$LEAST (fix_fuel_P f y)’ >> + fs [] >> + (* Use the monotonicity property for ‘f’ *) + rw [] >> + qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> + first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> + fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> + first_x_assum (qspecl_assume [‘m’]) >> gvs [] >> + first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] + ) >> + (* Return case: we must take the maximum of the fuel for ‘f’ and ‘h’, and use + the monotonicity property *) + fs [fix_def] >> pop_assum mp_tac >> rw [] >> + first_x_assum (qspec_assume ‘a’) >> gvs [] >> + qexists ‘MAX ($LEAST (fix_fuel_P f y)) n'’ >> fs [] >> + (* Use the monotonicity properties *) + (* Instantiate the Monotonicity property for ‘f’ (the induction hypothesis gives + the one for ‘h’) *) + qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> + first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> + fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> + first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs [] >> + first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] >> + (* Prove the monotonicity property for ‘do z <- fix f y; h (fix f) z’ *) + rw [] >> + (* First, one of the ‘fix_fuel ... f y’ doesn't use the proper fuel *) + sg ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y = Return a’ + >-( + qspecl_assume [‘f’, ‘MAX ($LEAST (fix_fuel_P f y)) n'’, ‘y’] fix_fuel_P_least >> + gvs [fix_fuel_P_def, is_diverge_def] >> + Cases_on ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y’ >> fs [] >> + (* Use the monotonicity property - there are two goals here *) + qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> + first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> + fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> + first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs []) >> + (* Instantiate the monotonicity property for ‘f’ *) + qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> + first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> + gvs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> + first_x_assum (qspecl_assume [‘m’]) >> gvs [] >> + first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] +QED + +(* If ‘g (fix f) x’ doesn't diverge, we can exhibit some fuel *) +Theorem fix_not_diverge_implies_fix_fuel: + ∀N f. is_valid_fp_body N f ⇒ + ∀x. f (fix f) x ≠ Diverge ⇒ + ∃n. f (fix f) x = f (fix_fuel n f) x +Proof + metis_tac [fix_not_diverge_implies_fix_fuel_aux] +QED + +Theorem fix_fixed_diverges: + ∀N f. is_valid_fp_body N f ⇒ ∀x. ~(∃ n. fix_fuel_P f x n) ⇒ fix f x = f (fix f) x +Proof + (* We do the proof by contraposition: if ‘f (fix f) x’ doesn't diverge, we + can exhibit some fuel (lemma [fix_not_diverge_implies_fix_fuel]) *) + rw [fix_def] >> + imp_res_tac fix_not_diverge_implies_fix_fuel >> + pop_assum (qspec_assume ‘x’) >> + fs [fix_fuel_P_def, is_diverge_def] >> + (* Case analysis: we have to prove that the ‘Return’ and ‘Fail’ cases lead + to a contradiction *) + Cases_on ‘f (fix f) x’ >> gvs [] >> + first_x_assum (qspec_assume ‘SUC n’) >> fs [fix_fuel_def] >> + pop_assum mp_tac >> case_tac >> fs [] +QED + +(* If ‘g (fix_fuel n f) x’ doesn't diverge, then it is equal to ‘g (fix f) x’ *) +Theorem fix_fuel_not_diverge_eq_fix_aux: + ∀N M g f. is_valid_fp_body M f ⇒ + is_valid_fp_body N g ⇒ + ∀n x. g (fix_fuel n f) x ≠ Diverge ⇒ + g (fix f) x = g (fix_fuel n f) x +Proof + Induct_on ‘N’ + >-(fs [is_valid_fp_body_def]) >> + rw [is_valid_fp_body_def] >> + first_x_assum (qspec_assume ‘x’) >> rw [] + >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >> + (* Use the validity hypothesis *) + fs [] >> pop_assum ignore_tac >> + (* For ‘fix f y = fix_fuel n f y’: use the monotonicity property *) + sg ‘fix_fuel_P f y n’ + >-(Cases_on ‘fix_fuel n f y’ >> fs [fix_fuel_P_def, is_diverge_def, bind_def]) >> + sg ‘fix f y = fix_fuel n f y’ >-(metis_tac [fix_fuel_eq_fix])>> + (* Case disjunction on the call to ‘f’ *) + Cases_on ‘fix_fuel n f y’ >> gvs [bind_def] >> + (* We have to prove that: ‘h (fix f) a = h (fix_fuel n f) a’: use the induction hypothesis *) + metis_tac [] +QED + +Theorem fix_fuel_not_diverge_eq_fix: + ∀N f. is_valid_fp_body N f ⇒ + ∀n x. f (fix_fuel n f) x ≠ Diverge ⇒ + f (fix f) x = f (fix_fuel n f) x +Proof + metis_tac [fix_fuel_not_diverge_eq_fix_aux] +QED + +Theorem fix_fixed_terminates: + ∀N f. is_valid_fp_body N f ⇒ ∀x n. fix_fuel_P f x n ⇒ fix f x = f (fix f) x +Proof + (* The proof simply uses the lemma [fix_fuel_not_diverge_eq_fix] *) + rw [fix_fuel_P_def, is_diverge_def, fix_def] >> case_tac >> fs [] >> + (* We can prove that ‘fix_fuel ($LEAST ...) f x ≠ Diverge’ *) + qspecl_assume [‘f’, ‘n’, ‘x’] fix_fuel_P_least >> + pop_assum sg_premise_tac >-(Cases_on ‘fix_fuel n f x’ >> fs []) >> + fs [fix_fuel_P_def, is_diverge_def] >> + (* *) + Cases_on ‘($LEAST (fix_fuel_P f x))’ >> fs [fix_fuel_def] >> + irule (GSYM fix_fuel_not_diverge_eq_fix) >> + Cases_on ‘f (fix_fuel n'' f) x’ >> fs [] >> metis_tac [] +QED + +(* +Type ft = ``: 'a -> ('a result + (num # num # 'a))`` + +val fix_fuel_def = Define ‘ + (fix_fuel (0 : num) (fs : ('a ft) list) + (i : num) (x : 'a) : 'a result = Diverge) ∧ + + (fix_fuel (SUC n) fs i x = + case EL i fs x of + | INL r => r + | INR (j, k, y) => + case fix_fuel n fs j y of + | Fail e => Fail e + | Diverge => Diverge + | Return z => + fix_fuel n fs k z) +’ + +val fix_fuel_P_def = Define ‘ + fix_fuel_P fs i x n = ~(is_diverge (fix_fuel n fs i x)) +’ + +val fix_def = Define ‘ + fix (fs : ('a ft) list) (i : num) (x : 'a) : 'a result = + if (∃ n. fix_fuel_P fs i x n) + then fix_fuel ($LEAST (fix_fuel_P fs i x)) fs i x + else Diverge +’ + +Theorem fix_fuel_mono: + ∀f. is_valid_fp_body f ⇒ + ∀n x. fix_fuel_P f x n ⇒ + ∀ m. n ≤ m ⇒ + fix_fuel n f x = fix_fuel m f x +Proof + ntac 2 strip_tac >> + Induct_on ‘n’ >> rpt strip_tac + >- (fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >> + Cases_on ‘m’ >- int_tac >> fs [] >> + fs [is_valid_fp_body_def] >> + fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def] >> + + (*(* Use the validity property *) + last_assum (qspec_assume ‘x’) >> (* TODO: consume? *) *) + + (*pop_assum ignore_tac >> (* TODO: not sure *) *) + Induct_on ‘N’ >- fs [eval_ftree_def] >> + rw [] >> + rw [eval_ftree_def] >> + Cases_on ‘h x’ >> fs [] >> + Cases_on ‘y’ >> fs [] >> + Cases_on ‘y'’ >> fs [] >> + + last_assum (qspec_assume ‘q’) >> + Cases_on ‘fix_fuel n f q’ >> fs [] >> + + Cases_on ‘N’ >> fs [eval_ftree_def] >> + + Cases_on ‘y’ >> fs [] >> + Cases_on ‘y'’ >> fs [] >> + rw [] >> + (* This makes a case disjunction on the validity property *) + rw [] + >-((* Case 1: the continuation doesn't matter *) fs []) >> + (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) + (* Instantiate the validity property with the different continuations *) + first_assum (qspec_assume ‘fix_fuel n f’) >> + first_assum (qspec_assume ‘fix_fuel n' f’) >> + last_assum (qspec_assume ‘y’) >> + fs [] +QED + + + +Type ft = ``: ('a -> 'a result) -> 'a -> ('a result + (num # 'a))`` + +val fix_fuel_def = Define ‘ + (fix_fuel (0 : num) (fs : ('a ft) list) (g : 'a -> 'a result) + (i : num) (x : 'a) : 'a result = Diverge) ∧ + + (fix_fuel (SUC n) fs g i x = + case EL i fs g x of + | INL r => r + | INR (j, y) => + case g y of + | Fail e => Fail e + | Diverge => Diverge + | Return z => fix_fuel n fs g j z) +’ + +val fix_fuel_def = Define ‘ + (fix_fuel (0 : num) (fs : ('a ft) list) g (i : num) (x : 'a) : 'a result = Diverge) ∧ + + (fix_fuel (SUC n) fs g i x = + case EL i fs x of + | INL r => r + | INR (j, y) => + case g y of + | Fail e => Fail e + | Diverge => Diverge + | Return z => fix_fuel n fs g j z) +’ + +val fix_fuel_def = Define ‘ + (fix_fuel (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = Diverge) ∧ + (fix_fuel (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = f (fix_fuel n f) x) +’ + +val fix_fuel_P_def = Define ‘ + fix_fuel_P f x n = ~(is_diverge (fix_fuel n f x)) +’ + +val fix_def = Define ‘ + fix (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = + if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge +’ + +(*Datatype: + ftree = Rec (('a -> ('a result + ('a # num))) # ftree list) | NRec ('a -> 'a result) +End + +Type frtree = ``: ('b -> ('b result + ('a # num))) list`` +Type ftree = “: ('a, 'b) frtree # ('b result + ('a # num))” +*) + +val eval_ftree_def = Define ‘ + (eval_ftree 0 (g : 'a -> 'a result) + (fs : ('a -> ('a result + ('a # num))) list) x = Diverge) ∧ + + (eval_ftree (SUC n) g fs x = + case x of + | INL r => r + | INR (y, i) => + case g y of + | Fail e => Fail e + | Diverge => Diverge + | Return z => + let f = EL i fs in + eval_ftree n g fs (f z)) +’ + +Theorem fix_fuel_mono: + ∀N fs i. + let f = (\g x. eval_ftree N g fs (INR (x, i))) in + ∀n x. fix_fuel_P f x n ⇒ + ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x +Proof + Induct_on ‘N’ + >-( + fs [eval_ftree_def] >> + + ntac 2 strip_tac >> + Induct_on ‘n’ >> rpt strip_tac + >- (fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >> + Cases_on ‘m’ >- int_tac >> fs [] >> + fs [is_valid_fp_body_def] >> + fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def] >> + + +val is_valid_fp_body_def = Define ‘ + is_valid_fp_body (f : ('a -> 'b result) -> 'a -> 'b result) = + (∃N ft. ∀x g. f g x = eval_ftree N g ft (x, i)) +’ + +val eval_ftree_def = Define ‘ + (eval_ftree 0 (g : 'a -> 'b result) + (fs : ('b -> ('b result + ('a # num))) list, x : 'b result + ('a # num)) = Diverge) ∧ + + (eval_ftree (SUC n) g (fs, x) = + case x of + | INL r => r + | INR (y, i) => + case g y of + | Fail e => Fail e + | Diverge => Diverge + | Return z => + let f = EL i fs in + eval_ftree n g (fs, f z)) +’ + +val is_valid_fp_body_def = Define ‘ + is_valid_fp_body (f : ('a -> 'b result) -> 'a -> 'b result) = + (∃N ft h. ∀x g. f g x = eval_ftree N g (ft, h x)) +’ + +Theorem fix_fuel_mono: + let f = (\x. eval_ftree N g (ft, h x)) in + ∀n x. fix_fuel_P f x n ⇒ + ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x +Proof + + +Theorem fix_fuel_mono: + ∀f. is_valid_fp_body f ⇒ + ∀n x. fix_fuel_P f x n ⇒ + ∀ m. n ≤ m ⇒ + fix_fuel n f x = fix_fuel m f x +Proof + ntac 2 strip_tac >> + Induct_on ‘n’ >> rpt strip_tac + >- (fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >> + Cases_on ‘m’ >- int_tac >> fs [] >> + fs [is_valid_fp_body_def] >> + fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def] >> + + (*(* Use the validity property *) + last_assum (qspec_assume ‘x’) >> (* TODO: consume? *) *) + + (*pop_assum ignore_tac >> (* TODO: not sure *) *) + Induct_on ‘N’ >- fs [eval_ftree_def] >> + rw [] >> + rw [eval_ftree_def] >> + Cases_on ‘h x’ >> fs [] >> + Cases_on ‘y’ >> fs [] >> + Cases_on ‘y'’ >> fs [] >> + + last_assum (qspec_assume ‘q’) >> + Cases_on ‘fix_fuel n f q’ >> fs [] >> + + Cases_on ‘N’ >> fs [eval_ftree_def] >> + + Cases_on ‘y’ >> fs [] >> + Cases_on ‘y'’ >> fs [] >> + rw [] >> + (* This makes a case disjunction on the validity property *) + rw [] + >-((* Case 1: the continuation doesn't matter *) fs []) >> + (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) + (* Instantiate the validity property with the different continuations *) + first_assum (qspec_assume ‘fix_fuel n f’) >> + first_assum (qspec_assume ‘fix_fuel n' f’) >> + last_assum (qspec_assume ‘y’) >> + fs [] +QED + + +val length_ftree = “ +( + [ + (\n. INL (return (1 + n))) + ], + (case ls of + | ListCons x tl => + INR (tl, 0) + | ListNil => INL (return 0)) +) : ('a list_t, int) ftree +” + +val eval_length_ftree = mk_icomb (“eval_ftree 1 g”, length_ftree) + +Theorem length_body_eq: + eval_ftree (SUC (SUC 0)) g + ( + [ + (\n. INL (Return (1 + n))) + ], + (case ls of + | ListCons x tl => + INR (tl, 0) + | ListNil => INL (Return 0)) + ) = + case ls of + | ListCons x tl => + do + n <- g tl; + Return (1 + n) + od + | ListNil => Return 0 +Proof + fs [eval_ftree_def, bind_def] >> + Cases_on ‘ls’ >> fs [] +QED + +val eval_ftree_def = Define ‘ + eval_ftree 0 (fs : ('a, 'b) ftree) (g : 'a -> 'b result) (x : 'b result + ('a # num)) = Diverge ∧ + + eval_ftree (SUC n) fs g x = + case x of + | INL r => r + | INR (y, i) => + case g y of + | Fail e => Fail e + | Diverge => Diverge + | Return z => + let f = EL i fs in + eval_ftree n fs g (f z) +’ + +val length_body_funs_def = Define + +“ +[ + (\ls. case ls of + | ListCons x tl => + INR (tl, 1) + | ListNil => INL (return 0)), + (\n. INL (return (1 + n))) +] +” + + + +“:('a, 'b) FT” + +Define + +val nth_body = Define ‘ + + +’ + +“INL” +“INR” + +“ + Rec ( + case ls of + | ListCons x tl => + do + INR (tl, 0) + od + | ListNil => INL (return 0), + [NRec (\n. return (1 + n))]) +” + +“ + case ls of + | ListCons x tl => + if u32_to_int i = (0:int) + then (Return x) + else + do + i0 <- u32_sub i (int_to_u32 1); + y <- nth tl i0; + return y + od + | ListNil => Fail Failure +” + + +“:'a + 'b” +“:'a # 'b” + +(*** Encoding of a function *) +Datatype: + ('a, 'b) test = Return ('a -> 'b) +End + +val tyax = + new_type_definition ("three", + Q.prove(`?p. (\(x,y). ~(x /\ y)) p`, cheat)) + +val three_bij = define_new_type_bijections + {name="three_tybij", ABS="abs3", REP="rep3", tyax=tyax} +type_of “rep3” +type_of “abs3” + +m “” + + Q.EXISTS_TAC `(F,F)` THEN GEN_BETA_TAC THEN REWRITE_TAC [])); + +“Return (\x. x)” + +Datatype: + ftree = Rec ('a -> ('a result + ('a # ftree))) | NRec ('a -> 'a result) +End + +Datatype: + 'a ftree = Rec ('a -> ('a result + ('a # ftree))) | NRec ('a -> 'a result) +End + +Datatype: + ftree = Rec ('a -> ('a result + ('a # ftree))) | NRec ('a -> 'a result) +End + +Datatype: + result = Return 'a | Fail error | Diverge +End + +Type M = ``: 'a result`` + + +val fix_def = Define ‘ + fix (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = + if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge +’ + +val _ = export_theory () -- cgit v1.2.3