From 46b126f4e0e86f14475bc310e150948434726dc7 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Fri, 8 Mar 2024 08:50:50 +0100 Subject: Update the handling of notations like #u32 or #isize --- backends/lean/Base/Arith/Scalar.lean | 2 +- backends/lean/Base/Primitives/ArraySlice.lean | 2 +- backends/lean/Base/Primitives/Scalar.lean | 168 ++++++++++++++++---------- backends/lean/Base/Primitives/Vec.lean | 2 +- 4 files changed, 104 insertions(+), 70 deletions(-) diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean index 43fd2766..9441be86 100644 --- a/backends/lean/Base/Arith/Scalar.lean +++ b/backends/lean/Base/Arith/Scalar.lean @@ -74,7 +74,7 @@ example : U32.ofInt 1 ≤ U32.max := by scalar_tac example (x : Int) (h0 : 0 ≤ x) (h1 : x ≤ U32.max) : - U32.ofInt x (by constructor <;> scalar_tac) ≤ U32.max := by + U32.ofIntCore x (by constructor <;> scalar_tac) ≤ U32.max := by scalar_tac -- Not equal diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean index c90a85b8..e1a39d40 100644 --- a/backends/lean/Base/Primitives/ArraySlice.lean +++ b/backends/lean/Base/Primitives/ArraySlice.lean @@ -131,7 +131,7 @@ def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices . -- TODO: very annoying that the α is an explicit parameter def Slice.len (α : Type u) (v : Slice α) : Usize := - Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac) + Usize.ofIntCore v.val.len (by constructor <;> scalar_tac) @[simp] theorem Slice.len_val {α : Type u} (v : Slice α) : (Slice.len α v).val = v.length := diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index 3afd13d2..bf6b01a6 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -281,25 +281,38 @@ theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : λ h => by apply And.intro <;> have hmin := Scalar.cMin_bound ty <;> have hmax := Scalar.cMax_bound ty <;> linarith -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty ≤ x) (hmax : x ≤ Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - --- Tactic to prove that integers are in bounds --- TODO: use this: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam -syntax "intlit" : tactic -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices; decide) - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty := by intlit) : Scalar ty := - -- Remark: we initially wrote: - -- let ⟨ hmin, hmax ⟩ := h - -- Scalar.ofIntCore x hmin hmax - -- We updated to the line below because a similar pattern in `Scalar.tryMk` - -- made reduction block. Both versions seem to work for `Scalar.ofInt`, though. - -- TODO: investigate - Scalar.ofIntCore x h.left h.right +/- [match_pattern] attribute: allows to us `Scalar.ofIntCore` inside of patterns. + This is particularly useful once we introduce notations like `#u32` (which + desugards to `Scalar.ofIntCore`) as it allows to write expressions like this: + Example: + ``` + match x with + | 0#u32 => ... + | 1#u32 => ... + | ... + ``` + -/ +@[match_pattern] def Scalar.ofIntCore {ty : ScalarTy} (x : Int) + (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : Scalar ty := + { val := x, hmin := h.left, hmax := h.right } + +-- The definitions below are used later to introduce nice syntax for constants, +-- like `1#u32`. We are reusing the technique described here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Different.20elaboration.20inside.2Foutside.20of.20match.20patterns/near/425455284 + +class InBounds (ty : ScalarTy) (x : Int) := + hInBounds : Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty + +-- This trick to trigger reduction for decidable propositions comes from +-- here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam/near/343495807 +class Decide (p : Prop) [Decidable p] : Prop where + isTrue : p +instance : @Decide p (.isTrue h) := @Decide.mk p (_) h + +instance [Decide (Scalar.cMin ty ≤ v ∧ v ≤ Scalar.cMax ty)] : InBounds ty v where + hInBounds := Decide.isTrue + +@[reducible, match_pattern] def Scalar.ofInt {ty : ScalarTy} (x : Int) [InBounds ty x] : Scalar ty := + Scalar.ofIntCore x (Scalar.bound_suffices ty x InBounds.hInBounds) @[simp] def Scalar.check_bounds (ty : ScalarTy) (x : Int) : Bool := (Scalar.cMin ty ≤ x || Scalar.min ty ≤ x) ∧ (x ≤ Scalar.cMax ty || x ≤ Scalar.max ty) @@ -326,7 +339,7 @@ def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := -- ``` -- then normalization blocks (for instance, some proofs which use reflexivity fail). -- However, the version below doesn't block reduction (TODO: investigate): - return Scalar.ofInt x (Scalar.check_bounds_prop h) + return Scalar.ofIntCore x (Scalar.check_bounds_prop h) else fail integerOverflow def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) @@ -439,8 +452,8 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by constructor; cases ty <;> apply (Scalar.ofInt 0) -- TODO: reducible? -@[reducible] def core_isize_min : Isize := Scalar.ofInt Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) -@[reducible] def core_isize_max : Isize := Scalar.ofInt Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) +@[reducible] def core_isize_min : Isize := Scalar.ofIntCore Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) +@[reducible] def core_isize_max : Isize := Scalar.ofIntCore Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) @[reducible] def core_i8_min : I8 := Scalar.ofInt I8.min @[reducible] def core_i8_max : I8 := Scalar.ofInt I8.max @[reducible] def core_i16_min : I16 := Scalar.ofInt I16.min @@ -453,8 +466,8 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by @[reducible] def core_i128_max : I128 := Scalar.ofInt I128.max -- TODO: reducible? -@[reducible] def core_usize_min : Usize := Scalar.ofInt Usize.min -@[reducible] def core_usize_max : Usize := Scalar.ofInt Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize)) +@[reducible] def core_usize_min : Usize := Scalar.ofIntCore Usize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize)) +@[reducible] def core_usize_max : Usize := Scalar.ofIntCore Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize)) @[reducible] def core_u8_min : U8 := Scalar.ofInt U8.min @[reducible] def core_u8_max : U8 := Scalar.ofInt U8.max @[reducible] def core_u16_min : U16 := Scalar.ofInt U16.min @@ -985,18 +998,18 @@ def U128.ofIntCore := @Scalar.ofIntCore .U128 -- ofInt -- TODO: typeclass? -abbrev Isize.ofInt := @Scalar.ofInt .Isize -abbrev I8.ofInt := @Scalar.ofInt .I8 -abbrev I16.ofInt := @Scalar.ofInt .I16 -abbrev I32.ofInt := @Scalar.ofInt .I32 -abbrev I64.ofInt := @Scalar.ofInt .I64 -abbrev I128.ofInt := @Scalar.ofInt .I128 -abbrev Usize.ofInt := @Scalar.ofInt .Usize -abbrev U8.ofInt := @Scalar.ofInt .U8 -abbrev U16.ofInt := @Scalar.ofInt .U16 -abbrev U32.ofInt := @Scalar.ofInt .U32 -abbrev U64.ofInt := @Scalar.ofInt .U64 -abbrev U128.ofInt := @Scalar.ofInt .U128 +@[match_pattern] abbrev Isize.ofInt := @Scalar.ofInt .Isize +@[match_pattern] abbrev I8.ofInt := @Scalar.ofInt .I8 +@[match_pattern] abbrev I16.ofInt := @Scalar.ofInt .I16 +@[match_pattern] abbrev I32.ofInt := @Scalar.ofInt .I32 +@[match_pattern] abbrev I64.ofInt := @Scalar.ofInt .I64 +@[match_pattern] abbrev I128.ofInt := @Scalar.ofInt .I128 +@[match_pattern] abbrev Usize.ofInt := @Scalar.ofInt .Usize +@[match_pattern] abbrev U8.ofInt := @Scalar.ofInt .U8 +@[match_pattern] abbrev U16.ofInt := @Scalar.ofInt .U16 +@[match_pattern] abbrev U32.ofInt := @Scalar.ofInt .U32 +@[match_pattern] abbrev U64.ofInt := @Scalar.ofInt .U64 +@[match_pattern] abbrev U128.ofInt := @Scalar.ofInt .U128 postfix:max "#isize" => Isize.ofInt postfix:max "#i8" => I8.ofInt @@ -1011,47 +1024,86 @@ postfix:max "#u32" => U32.ofInt postfix:max "#u64" => U64.ofInt postfix:max "#u128" => U128.ofInt +/- Testing the notations -/ +example := 0#u32 +example := 1#u32 +example := 1#i32 +example := 0#isize +example := (-1)#isize +example (x : U32) : Bool := + match x with + | 0#u32 => true + | _ => false + +example (x : U32) : Bool := + match x with + | 1#u32 => true + | _ => false + +example (x : I32) : Bool := + match x with + | (-1)#i32 => true + | _ => false + +-- Notation for pattern matching +-- We make the precedence looser than the negation. +notation:70 a:70 "#scalar" => Scalar.mk (a) _ _ + +example {ty} (x : Scalar ty) : ℤ := + match x with + | v#scalar => v + +example {ty} (x : Scalar ty) : Bool := + match x with + | 1#scalar => true + | _ => false + +example {ty} (x : Scalar ty) : Bool := + match x with + | -(1 : Int)#scalar => true + | _ => false + -- Testing the notations example : Result Usize := 0#usize + 1#usize -- TODO: factor those lemmas out -@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofInt x h).val = x := by +@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofIntCore x h).val = x := by simp [Scalar.ofInt, Scalar.ofIntCore] -@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofInt x h).val = x := by +@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofInt x h).val = x := by +@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofInt x h).val = x := by +@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofInt x h).val = x := by +@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofInt x h).val = x := by +@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofInt x h).val = x := by +@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofInt x h).val = x := by +@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofInt x h).val = x := by +@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofInt x h).val = x := by +@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofInt x h).val = x := by +@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofInt x h).val = x := by +@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofInt x h).val = x := by +@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -- Comparisons @@ -1133,22 +1185,4 @@ instance (ty : ScalarTy) : DecidableEq (Scalar ty) := -- else -- .fail integerOverflow --- Notation for pattern matching --- We make the precedence looser than the negation. -notation:70 a:70 "#scalar" => Scalar.mk (a) _ _ - -example {ty} (x : Scalar ty) : ℤ := - match x with - | v#scalar => v - -example {ty} (x : Scalar ty) : Bool := - match x with - | 1#scalar => true - | _ => false - -example {ty} (x : Scalar ty) : Bool := - match x with - | -(1 : Int)#scalar => true - | _ => false - end Primitives diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean index b03de15b..65249c12 100644 --- a/backends/lean/Base/Primitives/Vec.lean +++ b/backends/lean/Base/Primitives/Vec.lean @@ -43,7 +43,7 @@ instance (α : Type u) : Inhabited (Vec α) := by -- TODO: very annoying that the α is an explicit parameter def Vec.len (α : Type u) (v : Vec α) : Usize := - Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac) + Usize.ofIntCore v.val.len (by constructor <;> scalar_tac) @[simp] theorem Vec.len_val {α : Type u} (v : Vec α) : (Vec.len α v).val = v.length := -- cgit v1.2.3