(* Title: tactics.ML Author: Joshua Chen General tactics for dependent type theory. *) structure Tactics: sig val solve_side_conds: int Config.T val SIDE_CONDS: int -> context_tactic' -> thm list -> context_tactic' val rule_ctac: thm list -> context_tactic' val dest_ctac: int option -> thm list -> context_tactic' val intro_ctac: context_tactic' val elim_ctac: term list -> context_tactic' val cases_ctac: term -> context_tactic' end = struct (* Side conditions *) val solve_side_conds = Attrib.setup_config_int \<^binding>\<open>solve_side_conds\<close> (K 2) fun SIDE_CONDS j ctac facts i (cst as (ctxt, st)) = cst |> (case Config.get ctxt solve_side_conds of 1 => (ctac CTHEN_ALL_NEW (CTRY o Types.known_ctac facts)) i | 2 => ctac i CTHEN CREPEAT_IN_RANGE (i + j) (Thm.nprems_of st - i) (CTRY o CREPEAT_ALL_NEW_FWD (Types.check_infer facts)) | _ => ctac i) (* rule, dest, intro *) local fun mk_rules _ ths [] = ths | mk_rules n ths ths' = let val ths'' = foldr1 (op @) (map (fn th => [rotate_prems n (th RS @{thm PiE})] handle THM _ => []) ths') in mk_rules n (ths @ ths') ths'' end in (*Resolves with given rules*) fun rule_ctac ths i (ctxt, st) = TACTIC_CONTEXT ctxt (resolve_tac ctxt (mk_rules 0 [] ths) i st) (*Attempts destruct-resolution with the n-th premise of the given rules*) fun dest_ctac opt_n ths i (ctxt, st) = TACTIC_CONTEXT ctxt (dresolve_tac ctxt (mk_rules (case opt_n of NONE => 0 | SOME 0 => 0 | SOME n => n-1) [] ths) i st) end (*Applies an appropriate introduction rule*) val intro_ctac = CONTEXT_TACTIC' (fn ctxt => SUBGOAL (fn (goal, i) => let val concl = Logic.strip_assums_concl goal in if Lib.is_typing concl andalso Lib.is_rigid (Lib.type_of_typing concl) then resolve_tac ctxt (Named_Theorems.get ctxt \<^named_theorems>\<open>intro\<close>) i else no_tac end)) (* Induction/elimination *) (*Pushes a known typing t:T into a \<Prod>-type. This tactic is well-behaved only when t is sufficiently well specified (otherwise there might be multiple possible judgments t:T that unify, and which is chosen is undefined).*) fun internalize_fact_tac t = Subgoal.FOCUS_PARAMS (fn {context = ctxt, concl = raw_concl, ...} => let val concl = Logic.strip_assums_concl (Thm.term_of raw_concl) val C = Lib.type_of_typing concl val B = Thm.cterm_of ctxt (Lib.lambda_var t C) val a = Thm.cterm_of ctxt t (*The resolvent is PiE[where ?B=B and ?a=a]*) val resolvent = Drule.infer_instantiate' ctxt [NONE, NONE, SOME B, SOME a] @{thm PiE} in HEADGOAL (resolve_tac ctxt [resolvent]) (*Unify with the correct type T*) THEN SOMEGOAL (NO_CONTEXT_TACTIC ctxt o Types.known_ctac []) end) fun elim_core_tac tms types ctxt = let val rule_insts = map ((Elim.lookup_rule ctxt) o Term.head_of) types val rules = flat (map (fn rule_inst => case rule_inst of NONE => [] | SOME (rl, idxnames) => [Drule.infer_instantiate ctxt (idxnames ~~ map (Thm.cterm_of ctxt) tms) rl]) rule_insts) in resolve_tac ctxt rules THEN' RANGE (replicate (length tms) (NO_CONTEXT_TACTIC ctxt o Types.check_infer [])) end handle Option => K no_tac (*Premises that have already been pushed into the \<Prod>-type*) structure Inserts = Proof_Data ( type T = term Item_Net.T val init = K (Item_Net.init Term.aconv_untyped single) ) fun elim_ctac tms = case tms of [] => CONTEXT_TACTIC' (fn ctxt => eresolve_tac ctxt (map #1 (Elim.rules ctxt))) | major :: _ => CONTEXT_SUBGOAL (fn (goal, _) => fn cst as (ctxt, st) => let val facts = map Thm.prop_of (Context_Facts.known ctxt) val prems = Logic.strip_assums_hyp goal val template = Lib.typing_of_term major val types = filter (fn th => Term.could_unify (template, th)) (facts @ prems) |> map Lib.type_of_typing in case types of [] => no_ctac cst | _ => let val inserts = facts @ prems |> filter Lib.is_typing |> map Lib.dest_typing |> filter_out (fn (t, _) => Term.aconv (t, major) orelse Item_Net.member (Inserts.get ctxt) t) |> map (fn (t, T) => ((t, T), Lib.subterm_count_distinct tms T)) |> filter (fn (_, i) => i > 0) (*`t1: T1` comes before `t2: T2` if T1 contains t2 as subterm. If they are incomparable, then order by decreasing `subterm_count [p, x, y] T`*) |> sort (fn (((t1, _), i), ((_, T2), j)) => Lib.cond_order (Lib.subterm_order T2 t1) (int_ord (j, i))) |> map (#1 o #1) val record_inserts = Inserts.map (fold Item_Net.update inserts) val tac = (*Push premises having a subterm in `tms` into a \<Prod>*) fold (fn t => fn tac => tac THEN HEADGOAL (internalize_fact_tac t ctxt)) inserts all_tac (*Apply elimination rule*) THEN HEADGOAL ( elim_core_tac tms types ctxt (*Pull pushed premises back out*) THEN_ALL_NEW (SUBGOAL (fn (_, i) => REPEAT_DETERM_N (length inserts) (resolve_tac ctxt @{thms PiI[rotated]} i)))) in TACTIC_CONTEXT (record_inserts ctxt) (tac st) end end) fun cases_ctac tm = let fun tac ctxt = SUBGOAL (fn (goal, i) => let val facts = Proof_Context.facts_of ctxt val prems = Logic.strip_assums_hyp goal val template = Lib.typing_of_term tm val types = map (Thm.prop_of o #1) (Facts.could_unify facts template) @ filter (fn prem => Term.could_unify (template, prem)) prems |> map Lib.type_of_typing val res = (case types of [typ] => Drule.infer_instantiate' ctxt [SOME (Thm.cterm_of ctxt tm)] (the (Case.lookup_rule ctxt (Term.head_of typ))) | [] => raise Option | _ => raise error (Syntax.string_of_term ctxt tm ^ "not uniquely typed")) handle Option => error ("No case rule known for " ^ (Syntax.string_of_term ctxt tm)) in resolve_tac ctxt [res] i end) in CONTEXT_TACTIC' tac end end open Tactics