(******** Isabelle/HoTT: Univalence Feb 2019 ********) theory Univalence imports HoTT_Methods Prod Sum Eq begin section \Homotopy\ definition homotopic :: "[t, t \ t, t, t] \ t" ("(2homotopic[_, _] _ _)" [0, 0, 1000, 1000]) where "homotopic[A, B] f g \ \x: A. f`x =[B x] g`x" declare homotopic_def [comp] syntax "_homotopic" :: "[t, idt, t, t, t] \ t" ("(1_ ~[_: _. _]/ _)" [101, 0, 0, 0, 101] 100) translations "f ~[x: A. B] g" \ "(CONST homotopic) A (\x. B) f g" (* syntax "_homotopic'" :: "[t, t] \ t" ("(2_ ~ _)" [1000, 1000]) ML \val pretty_homotopic = Attrib.setup_config_bool @{binding "pretty_homotopic"} (K true)\ print_translation \ let fun homotopic_tr' ctxt [A, B, f, g] = if Config.get ctxt pretty_homotopic then Syntax.const @{syntax_const "_homotopic'"} $ f $ g else @{const homotopic} $ A $ B $ f $ g in [(@{const_syntax homotopic}, homotopic_tr')] end \ *) lemma homotopic_type: assumes [intro]: "A: U i" "B: A \ U i" "f: \x: A. B x" "g: \x: A. B x" shows "f ~[x: A. B x] g: U i" by derive declare homotopic_type [intro] schematic_goal fun_eq_imp_homotopic: assumes [intro]: "p: f =[\x: A. B x] g" "f: \x: A. B x" "g: \x: A. B x" "A: U i" "B: A \ U i" shows "?prf: f ~[x: A. B x] g" proof (path_ind' f g p) show "\f. f : \(x: A). B x \ \x: A. refl(f`x): f ~[x: A. B x] f" by derive qed routine definition happly :: "[t, t \ t, t, t, t] \ t" where "happly A B f g p \ indEq (\f g. & f ~[x: A. B x] g) (\f. \(x: A). refl(f`x)) f g p" syntax "_happly" :: "[idt, t, t, t, t, t] \ t" ("(2happly[_: _. _] _ _ _)" [0, 0, 0, 1000, 1000, 1000]) translations "happly[x: A. B] f g p" \ "(CONST happly) A (\x. B) f g p" corollary happly_type: assumes [intro]: "p: f =[\x: A. B x] g" "f: \x: A. B x" "g: \x: A. B x" "A: U i" "B: A \ U i" shows "happly[x: A. B x] f g p: f ~[x: A. B x] g" unfolding happly_def by (derive lems: fun_eq_imp_homotopic) section \Equivalence\ text \For now, we define equivalence in terms of bi-invertibility.\ definition biinv :: "[t, t, t] \ t" ("(2biinv[_, _]/ _)") where "biinv[A, B] f \ (\g: B \ A. g o[A] f ~[x:A. A] id A) \ (\g: B \ A. f o[B] g ~[x: B. B] id B)" text \ The meanings of the syntax defined above are: \<^item> @{term "f ~[x: A. B x] g"} expresses that @{term f} and @{term g} are homotopic functions of type @{term "\x:A. B x"}. \<^item> @{term "biinv[A, B] f"} expresses that the function @{term f} of type @{term "A \ B"} is bi-invertible. \ lemma biinv_type: assumes [intro]: "A: U i" "B: U i" "f: A \ B" shows "biinv[A, B] f: U i" unfolding biinv_def by derive declare biinv_type [intro] schematic_goal id_is_biinv: assumes [intro]: "A: U i" shows "?prf: biinv[A, A] (id A)" unfolding biinv_def proof (rule Sum_routine, compute) show "x: A. refl x>: \(g: A \ A). (g o[A] id A) ~[x: A. A] (id A)" by derive show "x: A. refl x>: \(g: A \ A). (id A o[A] g) ~[x: A. A] (id A)" by derive qed routine definition equivalence :: "[t, t] \ t" (infix "\" 100) where "A \ B \ \f: A \ B. biinv[A, B] f" schematic_goal equivalence_symmetric: assumes [intro]: "A: U i" shows "?prf: A \ A" unfolding equivalence_def proof (rule Sum_routine) show "\f. f : A \ A \ biinv[A, A] f : U i" unfolding biinv_def by derive show "id A: A \ A" by routine qed (routine add: id_is_biinv) section \Transport, homotopy, and bi-invertibility\ schematic_goal transport_invl_hom: assumes [intro]: "A: U i" "P: A \ U j" "x: A" "y: A" "p: x =[A] y" shows "?prf: (transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p) ~[w: P`x. P`x] id P`x" proof (rule happly_type[OF transport_invl]) show "(transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p): P`x \ P`x" proof show "P`y: U j" by routine qed routine qed routine schematic_goal transport_invr_hom: assumes [intro]: "A: U i" "P: A \ U j" "x: A" "y: A" "p: x =[A] y" shows "?prf: (transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)) ~[w: P`y. P`y] id P`y" proof (rule happly_type[OF transport_invr]) show "(transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)): P`y \ P`y" proof show "P`x: U j" by routine qed routine qed routine declare transport_invl_hom [intro] transport_invr_hom [intro] (* Next we derive a proof that the transport of an equality @{term p} is bi-invertible, with inverse given by the transport of the inverse @{text "~p"}. The proof is a challenge for current method automation, for two main reasons: 1. *) declare[[pretty_transport=false, goals_limit=100]] lemma id_expand: "\A. A: U i \ A \ (id U i)`A" by derive lemma id_contract: "\A. A: U i \ (id U i)`A \ A" by derive schematic_goal transport_biinv: assumes [intro]: "p: A =[U i] B" "A: U i" "B: U i" shows "?prf: biinv[A, B] (transport[id U i, A, B] p)" apply (subst (0 2) id_expand, unfold biinv_def, fact+) \ \Need to rewrite the first instances of @{term A} and @{term B} in order to use the proofs of @{thm transport_invl_hom} and @{thm transport_invr_hom} later.\ apply (rule Sum_routine) prefer 2 apply (rule Sum_routine) prefer 3 apply (rule transport_invl_hom) prefer 9 apply (rule Sum_routine) prefer 3 apply (rule transport_invr_hom) \ \The remaining subgoals can now be handled relatively easily.\ proof - show *: "U i: U (Suc i)" by derive show "U i: U (Suc i)" by fact fix g assume [intro]: "g: (id U i)`B \ (id U i)`A" have "transport (id U i) A B p o[(id U i)`B] g: (id U i)`B \ (id U i)`B" proof show "(id U i)`A: U i" by derive qed derive moreover have "transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i" apply rule prefer 3 apply (fact, derive) done then show "(transport[id U i, A, B] p) o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i" by routine have "g o[(id U i)`A] transport (id U i) A B p: (id U i)`A \ (id U i)`A" proof show "(id U i)`B: U i" by derive qed derive moreover have "g o[(id U i)`A] transport (id U i) A B p ~[x: (id U i)`A. (id U i)`A] id (id U i)`A: U i" apply rule prefer 3 apply (fact, derive) done then show "g o[(id U i)`A] transport (id U i) A B p ~[x: (id U i)`A. (id U i)`A] id (id U i)`A: U i" by routine qed section \Univalence\ schematic_goal type_eq_imp_equiv: assumes [intro]: "A: U i" "B: U i" shows "?prf: (A =[U i] B) \ A \ B" unfolding equivalence_def apply (rule Prod_routine, rule Sum_routine) prefer 3 apply (derive lems: transport_biinv) proof - fix p assume [intro]: "p: A =[U i] B" have "transport (id U i) A B p: (id U i)`A \ (id U i)`B" proof show "U i: U(Suc i)" by hierarchy qed derive moreover have [intro]: "(id U i)`A \ (id U i)`B \ A \ B" by derive ultimately show "transport (id U i) A B p: A \ B" by simp qed deriv (* section \The univalence axiom\ axiomatization univalence :: "[t, t] \ t" where UA: "univalence A B: isequiv[A, B] idtoeqv" *) end