theory HoTT_Theorems imports HoTT begin text "A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified. Things that *should* be automated: \ Checking that \A\ is a well-formed type, when writing things like \x : A\ and \A : U\. \ Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair? " \ \Turn on trace for unification and the simplifier, for debugging.\ declare[[unify_trace_simp, unify_trace_types, simp_trace, simp_trace_depth_limit=1]] section \Functions\ subsection \Typing functions\ text "Declaring \Prod_intro\ with the \intro\ attribute (in HoTT.thy) enables \standard\ to prove the following." lemma "\<^bold>\x:A. x : A\A" .. proposition "A \ B \ \<^bold>\x:A. x : B\A" proof - assume assm: "A \ B" have id: "\<^bold>\x:A. x : A\A" .. from assm have "A\A \ B\A" by simp with id show "\<^bold>\x:A. x : B\A" .. qed proposition "\<^bold>\x:A. \<^bold>\y:B. x : A\B\A" proof fix a assume "a : A" then show "\<^bold>\y:B. a : B \ A" .. qed subsection \Function application\ proposition "a : A \ (\<^bold>\x:A. x)`a \ a" by simp text "Currying:" lemma "a : A \ (\<^bold>\x:A. \<^bold>\y:B(x). f x y)`a \ \<^bold>\y:B(a). f a y" by simp lemma "\a : A; b : B(a); c : C(a)(b)\ \ (\<^bold>\x:A. \<^bold>\y:B(x). \<^bold>\z:C(x)(y). f x y z)`a`b`c \ f a b c" by simp proposition wellformed_currying: fixes A::Term and B::"Term \ Term" and C::"Term \ Term \ Term" assumes "A : U" and "B: A \ U" and "\x::Term. C(x): B(x) \ U" shows "\x:A. \y:B(x). C x y : U" proof (rule Prod_formation) fix x::Term assume *: "x : A" show "\y:B(x). C x y : U" proof (rule Prod_formation) show "B(x) : U" using * by (rule assms) qed (rule assms) qed (rule assms) proposition triply_curried: fixes A::Term and B::"Term \ Term" and C::"[Term, Term] \ Term" and D::"[Term, Term, Term] \ Term" assumes "A : U" and "B: A \ U" and "\x y::Term. y : B(x) \ C(x)(y) : U" and "\x y z::Term. z : C(x)(y) \ D(x)(y)(z) : U" shows "\x:A. \y:B(x). \z:C(x)(y). D(x)(y)(z) : U" proof (rule Prod_formation) fix x::Term assume 1: "x : A" show "\y:B(x). \z:C(x)(y). D(x)(y)(z) : U" proof (rule Prod_formation) show "B(x) : U" using 1 by (rule assms) fix y::Term assume 2: "y : B(x)" show "\z:C(x)(y). D(x)(y)(z) : U" proof (rule Prod_formation) show "C x y : U" using 2 by (rule assms) show "\z::Term. z : C(x)(y) \ D(x)(y)(z) : U" by (rule assms) qed qed qed (rule assms) lemma fixes a b A::Term and B::"Term \ Term" and f C::"[Term, Term] \ Term" assumes "\x y::Term. f x y : C x y" shows "\<^bold>\x:A. \<^bold>\y:B(x). f x y : \x:A. \y:B(x). C x y" proof fix x::Term show "\<^bold>\y:B(x). f x y : \y:B(x). C x y" proof show "\y. f x y : C x y" by (rule assms) qed qed text "Note that the propositions and proofs above often say nothing about the well-formedness of the types, or the well-typedness of the lambdas involved; one has to be very explicit and prove such things separately! This is the result of the choices made regarding the premises of the type rules." text "Polymorphic identity function." consts Ui::Term definition Id where "Id \ \<^bold>\A:Ui. \<^bold>\x:A. x" (* Have to think about universes... *) section \Nats\ text "Here's a dumb proof that 2 is a natural number." proposition "succ(succ 0) : Nat" proof - have "0 : Nat" by (rule Nat_intro1) from this have "(succ 0) : Nat" by (rule Nat_intro2) thus "succ(succ 0) : Nat" by (rule Nat_intro2) qed text "We can of course iterate the above for as many applications of \succ\ as we like. The next thing to do is to implement induction to automate such proofs. When we get more stuff working, I'd like to aim for formalizing the encode-decode method to be able to prove the only naturals are 0 and those obtained from it by \succ\." end