(* Title: HoTT/EqualProps.thy Author: Josh Chen Date: Jun 2018 Properties of equality. *) theory EqualProps imports HoTT_Methods Equal Prod begin section \Symmetry / Path inverse\ definition inv :: "[Term, Term, Term] \ Term" ("(1inv[_,/ _,/ _])") where "inv[A,x,y] \ \<^bold>\p:x =\<^sub>A y. indEqual[A] (\x y _. y =\<^sub>A x) (\x. refl(x)) x y p" lemma inv_type: assumes "p : x =\<^sub>A y" shows "inv[A,x,y]`p : y =\<^sub>A x" proof show "inv[A,x,y] : (x =\<^sub>A y) \ (y =\<^sub>A x)" proof (unfold inv_def, standard) fix p assume asm: "p : x =\<^sub>A y" show "indEqual[A] (\x y _. y =[A] x) refl x y p : y =\<^sub>A x" proof standard+ show "x : A" by (wellformed jdgmt: asm) show "y : A" by (wellformed jdgmt: asm) qed (assumption | rule | rule asm)+ qed (wellformed jdgmt: assms) qed (rule assms) lemma inv_comp: assumes "a : A" shows "inv[A,a,a]`refl(a) \ refl(a)" proof - have "inv[A,a,a]`refl(a) \ indEqual[A] (\x y _. y =\<^sub>A x) (\x. refl(x)) a a refl(a)" proof (unfold inv_def, standard) show "refl(a) : a =\<^sub>A a" using assms .. fix p assume asm: "p : a =\<^sub>A a" show "indEqual[A] (\x y _. y =\<^sub>A x) refl a a p : a =\<^sub>A a" proof standard+ show "a : A" by (wellformed jdgmt: asm) then show "a : A" . \ \The elimination rule requires that both arguments to \indEqual\ be shown to have the correct type.\ qed (assumption | rule | rule asm)+ qed also have "indEqual[A] (\x y _. y =\<^sub>A x) (\x. refl(x)) a a refl(a) \ refl(a)" by (standard | assumption | rule assms)+ finally show "inv[A,a,a]`refl(a) \ refl(a)" . qed section \Transitivity / Path composition\ text "``Raw'' composition function, of type \\x,y:A. x =\<^sub>A y \ (\z:A. y =\<^sub>A z \ x =\<^sub>A z)\." definition rcompose :: "Term \ Term" ("(1rcompose[_])") where "rcompose[A] \ \<^bold>\x:A. \<^bold>\y:A. \<^bold>\p:(x =\<^sub>A y). indEqual[A] (\x y _. \z:A. y =\<^sub>A z \ x =\<^sub>A z) (\x. \<^bold>\z:A. \<^bold>\p:(x =\<^sub>A z). indEqual[A](\x z _. x =\<^sub>A z) (\x. refl(x)) x z p) x y p" text "``Natural'' composition function abbreviation, effectively equivalent to a function of type \\x,y,z:A. x =\<^sub>A y \ y =\<^sub>A z \ x =\<^sub>A z\." abbreviation compose :: "[Term, Term, Term, Term] \ Term" ("(1compose[_,/ _,/ _,/ _])") where "compose[A,x,y,z] \ \<^bold>\p:(x =\<^sub>A y). \<^bold>\q:(y =\<^sub>A z). rcompose[A]`x`y`p`z`q" lemma compose_type: assumes "p : x =\<^sub>A y" and "q : y =\<^sub>A z" shows "compose[A,x,y,z]`p`q : x =\<^sub>A z" sorry lemma compose_comp: assumes "a : A" shows "compose[A,a,a,a]`refl(a)`refl(a) \ refl(a)" sorry \ \Long and tedious proof if the Simplifier is not set up.\ lemmas Equal_simps [intro] = inv_comp compose_comp end