(* Title: HoTT/EqualProps.thy Author: Josh Chen Date: Jun 2018 Properties of equality. *) theory EqualProps imports HoTT_Methods Equal Prod begin section \Symmetry / Path inverse\ axiomatization inv :: "Term \ Term" ("_\" [1000] 1000) where inv_def: "inv \ \p. ind\<^sub>= (\x. refl(x)) p" lemma inv_type: assumes "A : U(i)" and "x : A" and "y : A" and "p: x =\<^sub>A y" shows "p\: y =\<^sub>A x" unfolding inv_def proof (rule Equal_elim[where ?x=x and ?y=y]) \ \Path induction\ show "\x y. \x: A; y: A\ \ y =\<^sub>A x: U(i)" using assms(1) .. show "\x. x: A \ refl x: x =\<^sub>A x" .. qed (fact assms)+ lemma inv_comp: assumes "A : U(i)" and "a : A" shows "(refl a)\ \ refl(a)" unfolding inv_def proof show "\x. x: A \ refl x: x =\<^sub>A x" .. show "\x. x: A \ x =\<^sub>A x: U(i)" using assms(1) .. qed (fact assms) section \Transitivity / Path composition\ text " Raw composition function, of type \\x:A. \y:A. x =\<^sub>A y \ (\z:A. y =\<^sub>A z \ x =\<^sub>A z)\ polymorphic over the type \A\. " axiomatization rcompose :: Term where rcompose_def: "rcompose \ \<^bold>\x y p. ind\<^sub>= (\_. \<^bold>\z q. ind\<^sub>= (\x. refl(x)) q) p" lemma rcompose_type: assumes "A: U(i)" shows "rcompose: \x:A. \y:A. x =\<^sub>A y \ (\z:A. y =\<^sub>A z \ x =\<^sub>A z)" unfolding rcompose_def proof show "\x. x: A \ \<^bold>\y p. ind\<^sub>= (\_. \<^bold>\z p. ind\<^sub>= refl p) p: \y:A. x =\<^sub>A y \ (\z:A. y =\<^sub>A z \ x =\<^sub>A z)" proof show "\x y. \x: A ; y: A\ \ \<^bold>\p. ind\<^sub>= (\_. \<^bold>\z p. ind\<^sub>= refl p) p: x =\<^sub>A y \ (\z:A. y =\<^sub>A z \ x =\<^sub>A z)" proof { fix x y p assume asm: "x: A" "y: A" "p: x =\<^sub>A y" show "ind\<^sub>= (\_. \<^bold>\z p. ind\<^sub>= refl p) p: \z:A. y =[A] z \ x =[A] z" proof (rule Equal_elim[where ?x=x and ?y=y]) show "\x y. \x: A; y: A\ \ \z:A. y =\<^sub>A z \ x =\<^sub>A z: U(i)" proof show "\x y z. \x: A; y: A; z: A\ \ y =\<^sub>A z \ x =\<^sub>A z: U(i)" by (rule Prod_form Equal_form assms | assumption)+ qed (rule assms) show "\x. x: A \ \<^bold>\z p. ind\<^sub>= refl p: \z:A. x =\<^sub>A z \ x =\<^sub>A z" proof show "\x z. \x: A; z: A\ \ \<^bold>\p. ind\<^sub>= refl p: x =\<^sub>A z \ x =\<^sub>A z" proof { fix x z p assume asm: "x: A" "z: A" "p: x =\<^sub>A z" show "ind\<^sub>= refl p: x =[A] z" proof (rule Equal_elim[where ?x=x and ?y=z]) show "\x y. \x: A; y: A\ \ x =\<^sub>A y: U(i)" by standard (rule assms) show "\x. x: A \ refl x: x =\<^sub>A x" .. qed (fact asm)+ } show "\x z. \x: A; z: A\ \ x =\<^sub>A z: U(i)" by standard (rule assms) qed qed (rule assms) qed (rule asm)+ } show "\x y. \x: A; y: A\ \ x =\<^sub>A y: U(i)" by standard (rule assms) qed qed (rule assms) qed (fact assms) corollary assumes "A: U(i)" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" shows "rcompose`x`y`p`z`q: x =\<^sub>A z" by standard+ (rule rcompose_type assms)+ axiomatization compose :: "[Term, Term] \ Term" (infixl "\" 60) where compose_comp: "\ A: U(i); x: A; y: A; z: A; p: x =\<^sub>A y; q: y =\<^sub>A z \ \ p \ q \ rcompose`x`y`p`z`q" lemma compose_comp: assumes "A : U(i)" and "a : A" shows "compose[A,a,a,a]`refl(a)`refl(a) \ refl(a)" unfolding rcompose_def by (simplify lems: assms) lemmas EqualProps_rules [intro] = inv_type inv_comp compose_type compose_comp lemmas EqualProps_comps [comp] = inv_comp compose_comp end