(* Title: HoTT/EqualProps.thy Author: Josh Chen Date: Jun 2018 Properties of equality. *) theory EqualProps imports HoTT_Methods Equal Prod begin section \Symmetry / Path inverse\ definition inv :: "[Term, Term] \ (Term \ Term)" ("(1inv[_,/ _])") where "inv[x,y] \ \p. ind\<^sub>= (\x. refl(x)) x y p" lemma inv_type: assumes "A : U(i)" and "x : A" and "y : A" and "p: x =\<^sub>A y" shows "inv[x,y](p): y =\<^sub>A x" unfolding inv_def proof show "\x y. \x: A; y: A\ \ y =\<^sub>A x: U(i)" using assms(1) .. show "\x. x: A \ refl x: x =\<^sub>A x" .. qed (fact assms)+ lemma inv_comp: assumes "A : U(i)" and "a : A" shows "inv[a,a](refl(a)) \ refl(a)" unfolding inv_def proof show "\x. x: A \ refl x: x =\<^sub>A x" .. show "\x. x: A \ x =\<^sub>A x: U(i)" using assms(1) .. qed (fact assms) section \Transitivity / Path composition\ text "``Raw'' composition function, of type \\x,y:A. x =\<^sub>A y \ (\z:A. y =\<^sub>A z \ x =\<^sub>A z)\." definition rcompose :: "Term \ Term" ("(1rcompose[_])") where "rcompose[A] \ \<^bold>\x:A. \<^bold>\y:A. \<^bold>\p:(x =\<^sub>A y). indEqual[A] (\x y _. \z:A. y =\<^sub>A z \ x =\<^sub>A z) (\x. \<^bold>\z:A. \<^bold>\p:(x =\<^sub>A z). indEqual[A](\x z _. x =\<^sub>A z) (\x. refl(x)) x z p) x y p" definition compose :: "[Term, Term, Term] \ [Term, Term] \ Term" ("(1compose[ _,/ _,/ _])") where "compose[x,y,z] \ \p." lemma compose_type: assumes "A : U(i)" and "x : A" and "y : A" and "z : A" shows "compose[A,x,y,z] : x =\<^sub>A y \ y =\<^sub>A z \ x =\<^sub>A z" unfolding rcompose_def by (derive lems: assms) lemma compose_comp: assumes "A : U(i)" and "a : A" shows "compose[A,a,a,a]`refl(a)`refl(a) \ refl(a)" unfolding rcompose_def by (simplify lems: assms) lemmas EqualProps_rules [intro] = inv_type inv_comp compose_type compose_comp lemmas EqualProps_comps [comp] = inv_comp compose_comp end