(* Title: HoTT/Equal.thy Author: Josh Chen Date: Jun 2018 Equality type. *) theory Equal imports HoTT_Base begin section \Constants and syntax\ axiomatization Equal :: "[Term, Term, Term] \ Term" and refl :: "Term \ Term" ("(refl'(_'))" 1000) and indEqual :: "[Term, [Term, Term] \ Typefam, Term \ Term, Term, Term, Term] \ Term" ("(1ind\<^sub>=[_])") syntax "_EQUAL" :: "[Term, Term, Term] \ Term" ("(3_ =\<^sub>_/ _)" [101, 0, 101] 100) "_EQUAL_ASCII" :: "[Term, Term, Term] \ Term" ("(3_ =[_]/ _)" [101, 0, 101] 100) translations "a =[A] b" \ "CONST Equal A a b" "a =\<^sub>A b" \ "CONST Equal A a b" section \Type rules\ axiomatization where Equal_form: "\i A a b. \A : U(i); a : A; b : A\ \ a =\<^sub>A b : U(i)" and Equal_intro: "\A a. a : A \ refl(a) : a =\<^sub>A a" and Equal_elim: "\i A C f a b p. \ \x y. \x : A; y : A\ \ C x y: x =\<^sub>A y \ U(i); \x. x : A \ f x : C x x refl(x); a : A; b : A; p : a =\<^sub>A b \ \ ind\<^sub>=[A] C f a b p : C a b p" and Equal_comp: "\i A C f a. \ \x y. \x : A; y : A\ \ C x y: x =\<^sub>A y \ U(i); \x. x : A \ f x : C x x refl(x); a : A \ \ ind\<^sub>=[A] C f a a refl(a) \ f a" text "Admissible inference rules for equality type formation:" axiomatization where Equal_form_cond1: "\i A a b. a =\<^sub>A b : U(i) \ A : U(i)" and Equal_form_cond2: "\i A a b. a =\<^sub>A b : U(i) \ a : A" and Equal_form_cond3: "\i A a b. a =\<^sub>A b : U(i) \ b : A" lemmas Equal_rules [intro] = Equal_form Equal_intro Equal_elim Equal_comp lemmas Equal_form_conds [intro] = Equal_form_cond1 Equal_form_cond2 Equal_form_cond3 lemmas Equal_comps [comp] = Equal_comp end