(* Title: Equal.thy Author: Joshua Chen Date: 2018 Equality type *) theory Equal imports HoTT_Base begin section \Basic definitions\ axiomatization Equal :: "[t, t, t] \ t" and refl :: "t \ t" and indEqual :: "[t \ t, t] \ t" ("(1ind\<^sub>=)") syntax "_equal" :: "[t, t, t] \ t" ("(3_ =\<^sub>_/ _)" [101, 0, 101] 100) "_equal_ascii" :: "[t, t, t] \ t" ("(3_ =[_]/ _)" [101, 0, 101] 100) translations "a =[A] b" \ "CONST Equal A a b" "a =\<^sub>A b" \ "CONST Equal A a b" axiomatization where Equal_form: "\A: U i; a: A; b: A\ \ a =\<^sub>A b : U i" and Equal_intro: "a : A \ (refl a): a =\<^sub>A a" and Equal_elim: "\ p: x =\<^sub>A y; x: A; y: A; \x. x: A \ f x: C x x (refl x); \x y. \x: A; y: A\ \ C x y: x =\<^sub>A y \ U i \ \ ind\<^sub>= (\x. f x) p : C x y p" and Equal_comp: "\ a: A; \x. x: A \ f x: C x x (refl x); \x y. \x: A; y: A\ \ C x y: x =\<^sub>A y \ U i \ \ ind\<^sub>= (\x. f x) (refl a) \ f a" lemmas Equal_routine [intro] = Equal_form Equal_intro Equal_elim lemmas Equal_comp [comp] end