(******** Isabelle/HoTT: Equality Feb 2019 Intensional equality, path induction, and proofs of various results. ********) theory Eq imports Prod HoTT_Methods begin section \Type definitions\ axiomatization Eq :: "[t, t, t] \ t" and refl :: "t \ t" and indEq :: "[[t, t, t] \ t, t \ t, t, t, t] \ t" syntax "_Eq" :: "[t, t, t] \ t" ("(2_ =[_]/ _)" [101, 0, 101] 100) translations "a =[A] b" \ "(CONST Eq) A a b" axiomatization where Eq_form: "\A: U i; a: A; b: A\ \ a =[A] b: U i" and Eq_intro: "a: A \ (refl a): a =[A] a" and Eq_elim: "\ p: a =[A] b; a: A; b: A; \x. x: A \ f x: C x x (refl x); \x y. \x: A; y: A\ \ C x y: x =[A] y \ U i \ \ indEq C f a b p: C a b p" and Eq_comp: "\ a: A; \x. x: A \ f x: C x x (refl x); \x y. \x: A; y: A\ \ C x y: x =[A] y \ U i \ \ indEq C f a a (refl a) \ f a" lemmas Eq_form [form] lemmas Eq_routine [intro] = Eq_form Eq_intro Eq_elim lemmas Eq_comp [comp] section \Path induction\ text \We set up rudimentary automation of path induction:\ method path_ind for C :: "[t, t, t] \ t" = (rule Eq_elim[where ?C=C]; (assumption | fact)?) method path_ind' for a b p :: t = (rule Eq_elim[where ?a=a and ?b=b and ?p=p]; (assumption | fact)?) syntax "_induct_over" :: "[idt, idt, idt, t] \ [t, t, t] \ t" ("(2{_, _, _}/ _)" 0) translations "{x, y, p} C" \ "\x y p. C" text \ Use "@{method path_ind} @{term "{x, y, p} C x y p"}" to perform path induction for the given type family over the variables @{term x}, @{term y}, and @{term p}, and "@{method path_ind'} @{term a} @{term b} @{term p}" to let Isabelle try and infer the shape of the type family itself (this doesn't always work!). Note that @{term "{x, y, p} C x y p"} is just syntactic sugar for @{term "\x y p. C x y p"}. \ section \Properties of equality\ subsection \Symmetry (path inverse)\ definition inv :: "[t, t, t, t] \ t" where "inv A x y p \ indEq (\x y. ^(y =[A] x)) (\x. refl x) x y p" syntax "_inv" :: "t \ t" ("~_" [1000]) text \Pretty-printing switch for path inverse:\ ML \val pretty_inv = Attrib.setup_config_bool @{binding "pretty_inv"} (K true)\ print_translation \ let fun inv_tr' ctxt [A, x, y, p] = if Config.get ctxt pretty_inv then Syntax.const @{syntax_const "_inv"} $ p else @{const inv} $ A $ x $ y $ p in [(@{const_syntax inv}, inv_tr')] end \ lemma inv_type: "\A: U i; x: A; y: A; p: x =[A] y\ \ inv A x y p: y =[A] x" unfolding inv_def by derive lemma inv_comp: "\A: U i; a: A\ \ inv A a a (refl a) \ refl a" unfolding inv_def by derive declare inv_type [intro] inv_comp [comp] subsection \Transitivity (path composition)\ schematic_goal transitivity: assumes "A: U i" "x: A" "y: A" "p: x =[A] y" shows "?p: \z: A. y =[A] z \ x =[A] z" by (path_ind' x y p, quantify_all, path_ind "{x, z, _} x =[A] z", rule Eq_intro, routine add: assms) definition pathcomp :: "[t, t, t, t, t, t] \ t" where "pathcomp A x y z p q \ (indEq (\x y _. \z: A. y =[A] z \ x =[A] z) (\x. \z: A. \q: x =[A] z. indEq (\x z _. x =[A] z) (\x. refl x) x z q) x y p)`z`q" syntax "_pathcomp" :: "[t, t] \ t" (infixl "*" 110) ML \val pretty_pathcomp = Attrib.setup_config_bool @{binding "pretty_pathcomp"} (K true)\ \ \Pretty-printing switch for path composition\ print_translation \ let fun pathcomp_tr' ctxt [A, x, y, z, p, q] = if Config.get ctxt pretty_pathcomp then Syntax.const @{syntax_const "_pathcomp"} $ p $ q else @{const pathcomp} $ A $ x $ y $ z $ p $ q in [(@{const_syntax pathcomp}, pathcomp_tr')] end \ lemma pathcomp_type: assumes [intro]: "A: U i" "x: A" "y: A" "z: A" "p: x =[A] y" "q: y =[A] z" shows "pathcomp A x y z p q: x =[A] z" unfolding pathcomp_def by (derive lems: transitivity) lemma pathcomp_comp: assumes [intro]: "A: U i" "a: A" shows "pathcomp A a a a (refl a) (refl a) \ refl a" unfolding pathcomp_def by (derive lems: transitivity) declare pathcomp_type [intro] pathcomp_comp [comp] section \Higher groupoid structure of types\ schematic_goal pathcomp_idr: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" shows "?prf: pathcomp A x y y p (refl y) =[x =[A] y] p" proof (path_ind' x y p) show "\x. x: A \ refl(refl x): pathcomp A x x x (refl x) (refl x) =[x =[A] x] (refl x)" by derive qed routine schematic_goal pathcomp_idl: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" shows "?prf: pathcomp A x x y (refl x) p =[x =[A] y] p" proof (path_ind' x y p) show "\x. x: A \ refl(refl x): pathcomp A x x x (refl x) (refl x) =[x =[A] x] (refl x)" by derive qed routine schematic_goal pathcomp_invr: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" shows "?prf: pathcomp A x y x p (inv A x y p) =[x =[A] x] (refl x)" proof (path_ind' x y p) show "\x. x: A \ refl(refl x): pathcomp A x x x (refl x) (inv A x x (refl x)) =[x =[A] x] (refl x)" by derive qed routine schematic_goal pathcomp_invl: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" shows "?prf: pathcomp A y x y (inv A x y p) p =[y =[A] y] refl(y)" proof (path_ind' x y p) show "\x. x: A \ refl(refl x): pathcomp A x x x (inv A x x (refl x)) (refl x) =[x =[A] x] (refl x)" by derive qed routine schematic_goal inv_involutive: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" shows "?prf: inv A y x (inv A x y p) =[x =[A] y] p" proof (path_ind' x y p) show "\x. x: A \ refl(refl x): inv A x x (inv A x x (refl x)) =[x =[A] x] (refl x)" by derive qed routine text \ We use the proof of associativity of path composition to demonstrate the process of deriving proof terms. The proof involves a triply-nested path induction, which is cumbersome to write in a structured style, especially if one does not know the correct form of the proof term in the first place. However, using proof scripts the derivation becomes quite easy: we simply give the correct form of the statements to induct over, and prove the simple subgoals returned by the prover. The proof is sensitive to the order of the quantifiers in the product. In particular, changing the order causes unification to fail in the path inductions. It seems to be good practice to order the variables in the order over which we will path-induct. \ schematic_goal pathcomp_assoc: assumes [intro]: "A: U i" shows "?prf: \x: A. \y: A. \p: x =[A] y. \z: A. \q: y =[A] z. \w: A. \r: z =[A] w. pathcomp A x y w p (pathcomp A y z w q r) =[x =[A] w] pathcomp A x z w (pathcomp A x y z p q) r" apply (quantify 3) apply (path_ind "{x, y, p} \(z: A). \(q: y =[A] z). \(w: A). \(r: z =[A] w). pathcomp A x y w p (pathcomp A y z w q r) =[x =[A] w] pathcomp A x z w (pathcomp A x y z p q) r") apply (quantify 2) apply (path_ind "{xa, z, q} \(w: A). \(r: z =[A] w). pathcomp A xa xa w (refl xa) (pathcomp A xa z w q r) =[xa =[A] w] pathcomp A xa z w (pathcomp A xa xa z (refl xa) q) r") apply (quantify 2) apply (path_ind "{xb, w, r} pathcomp A xb xb w (refl xb) (pathcomp A xb xb w (refl xb) r) =[xb =[A] w] pathcomp A xb xb w (pathcomp A xb xb xb (refl xb) (refl xb)) r") text \The rest is now routine.\ proof - show "\x. x: A \ refl(refl x): pathcomp A x x x (refl x) (pathcomp A x x x (refl x) (refl x)) =[x =[A] x] pathcomp A x x x (pathcomp A x x x (refl x) (refl x)) (refl x)" by derive qed routine (* Todo, if possible: Implement a custom version of schematic_goal/theorem that exports the derived proof term. *) section \Functoriality of functions on types under equality\ schematic_goal transfer: assumes [intro]: "A: U i" "B: U i" "f: A \ B" "x: A" "y: A" "p: x =[A] y" shows "?prf: f`x =[B] f`y" by (path_ind' x y p, rule Eq_routine, routine) definition ap :: "[t, t, t, t, t] \ t" where "ap B f x y p \ indEq ({x, y, _} f`x =[B] f`y) (\x. refl (f`x)) x y p" syntax "_ap" :: "[t, t] \ t" ("(_{_})" [1000, 0] 1000) ML \val pretty_ap = Attrib.setup_config_bool @{binding "pretty_ap"} (K true)\ print_translation \ let fun ap_tr' ctxt [B, f, x, y, p] = if Config.get ctxt pretty_ap then Syntax.const @{syntax_const "_ap"} $ f $ p else @{const ap} $ B $ f $ x $ y $ p in [(@{const_syntax ap}, ap_tr')] end \ lemma ap_type: assumes "A: U i" "B: U i" "f: A \ B" "x: A" "y: A" "p: x =[A] y" shows "ap B f x y p: f`x =[B] f`y" unfolding ap_def using assms by (rule transfer) lemma ap_comp: assumes [intro]: "A: U i" "B: U i" "f: A \ B" "x: A" shows "ap B f x x (refl x) \ refl (f`x)" unfolding ap_def by derive declare ap_type [intro] ap_comp [comp] schematic_goal ap_func_pathcomp: assumes [intro]: "A: U i" "B: U i" "f: A \ B" shows "?prf: \x: A. \y: A. \p: x =[A] y. \z: A. \q: y =[A] z. ap B f x z (pathcomp A x y z p q) =[f`x =[B] f`z] pathcomp B (f`x) (f`y) (f`z) (ap B f x y p) (ap B f y z q)" apply (quantify 3) apply (path_ind "{x, y, p} \z: A. \q: y =[A] z. ap B f x z (pathcomp A x y z p q) =[f`x =[B] f`z] pathcomp B (f`x) (f`y) (f`z) (ap B f x y p) (ap B f y z q)") apply (quantify 2) apply (path_ind "{x, z, q} ap B f x z (pathcomp A x x z (refl x) q) =[f`x =[B] f`z] pathcomp B (f`x) (f`x) (f`z) (ap B f x x (refl x)) (ap B f x z q)") proof - show "\x. x: A \ refl(refl(f`x)): ap B f x x (pathcomp A x x x (refl x) (refl x)) =[f`x =[B] f`x] pathcomp B (f`x) (f`x) (f`x) (ap B f x x (refl x)) (ap B f x x (refl x))" by derive qed derive schematic_goal ap_func_compose: assumes [intro]: "A: U i" "B: U i" "C: U i" "f: A \ B" "g: B \ C" shows "?prf: \x: A. \y: A. \p: x =[A] y. ap C g (f`x) (f`y) (ap B f x y p) =[g`(f`x) =[C] g`(f`y)] ap C (compose A g f) x y p" apply (quantify 3) apply (path_ind "{x, y, p} ap C g (f`x) (f`y) (ap B f x y p) =[g`(f`x) =[C] g`(f`y)] ap C (compose A g f) x y p") proof - show "\x. x: A \ refl(refl (g`(f`x))) : ap C g (f`x) (f`x) (ap B f x x (refl x)) =[g`(f`x) =[C] g`(f`x)] ap C (compose A g f) x x (refl x)" unfolding compose_def by derive fix x y p assume [intro]: "x: A" "y: A" "p: x =[A] y" show "ap C g (f`x) (f`y) (ap B f x y p) =[g`(f`x) =[C] g`(f`y)] ap C (compose A g f) x y p: U i" proof have "(\x: A. g`(f`x))`x =[C] (\x: A. g`(f`x))`y \ g`(f`x) =[C] g`(f`y)" by derive moreover have "ap C (compose A g f) x y p : (\x: A. g`(f`x))`x =[C] (\x: A. g`(f`x))`y" unfolding compose_def by derive ultimately show "ap C (compose A g f) x y p : g`(f`x) =[C] g`(f`y)" by simp qed derive qed routine schematic_goal ap_func_inv: assumes [intro]: "A: U i" "B: U i" "f: A \ B" "x: A" "y: A" "p: x =[A] y" shows "?prf: ap B f y x (inv A x y p) =[f`y =[B] f`x] inv B (f`x) (f`y) (ap B f x y p)" proof (path_ind' x y p) show "\x. x: A \ refl(refl(f`x)): ap B f x x (inv A x x (refl x)) =[f`x =[B] f`x] inv B (f`x) (f`x) (ap B f x x (refl x))" by derive qed routine schematic_goal ap_func_id: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" shows "?prf: ap A (id A) x y p =[x =[A] y] p" proof (path_ind' x y p) fix x assume [intro]: "x: A" show "refl(refl x): ap A (id A) x x (refl x) =[x =[A] x] refl x" by derive fix y p assume [intro]: "y: A" "p: x =[A] y" have "ap A (id A) x y p: (id A)`x =[A] (id A)`y" by derive moreover have "(id A)`x =[A] (id A)`y \ x =[A] y" by derive ultimately have [intro]: "ap A (id A) x y p: x =[A] y" by simp show "ap A (id A) x y p =[x =[A] y] p: U i" by derive qed section \Transport\ schematic_goal transport: assumes [intro]: "A: U i" "P: A \ U i" "x: A" "y: A" "p: x =[A] y" shows "?prf: P x \ P y" proof (path_ind' x y p) show "\x. x: A \ id (P x): P x \ P x" by derive qed routine definition transport :: "[t \ t, t, t, t] \ t" where "transport P x y p \ indEq (\a b _. P a \ P b) (\x. id (P x)) x y p" lemma transport_type: assumes "A: U i" "P: A \ U i" "x: A" "y: A" "p: x =[A] y" shows "transport P x y p: P x \ P y" unfolding transport_def using assms by (rule transport) lemma transport_comp: assumes [intro]: "A: U i" "P: A \ U i" "a: A" shows "transport P a a (refl a) \ id (P a)" unfolding transport_def by derive declare transport_type [intro] transport_comp [comp] end