From c2dfffffb7586662c67e44a2d255a1a97ab0398b Mon Sep 17 00:00:00 2001 From: Josh Chen Date: Thu, 2 Apr 2020 17:57:48 +0200 Subject: Brand-spanking new version using Spartan infrastructure --- tests/Test.thy | 110 --------------------------------------------------------- 1 file changed, 110 deletions(-) delete mode 100644 tests/Test.thy (limited to 'tests') diff --git a/tests/Test.thy b/tests/Test.thy deleted file mode 100644 index 6f9f996..0000000 --- a/tests/Test.thy +++ /dev/null @@ -1,110 +0,0 @@ -(* -Title: tests/Test.thy -Author: Joshua Chen -Date: 2018 - -This is an old test suite from early implementations. -It is not always guaranteed to be up to date or to reflect most recent versions of the theory. -*) - -theory Test -imports "../HoTT" - -begin - - -text \ -A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified. - -Things that *should* be automated: -\<^item> Checking that @{term A} is a well-formed type, when writing things like @{prop "x: A"} and @{prop "A: U i"}. -\<^item> Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair? -\ - -declare[[unify_trace_simp, unify_trace_types, simp_trace, simp_trace_depth_limit=5]] -\ \Turn on trace for unification and the Simplifier, for debugging.\ - - -section \\-type\ - -subsection \Typing functions\ - -text \Declaring @{thm Prod_intro} with the @{attribute intro} attribute enables @{method rule} to prove the following.\ - -proposition assumes "A : U(i)" shows "\<^bold>\x. x: A \ A" -by (routine add: assms) - -proposition - assumes "A : U(i)" and "A \ B" - shows "\<^bold>\x. x : B \ A" -proof - - have "A \ A \ B \ A" using assms by simp - moreover have "\<^bold>\x. x : A \ A" by (routine add: assms) - ultimately show "\<^bold>\x. x : B \ A" by simp -qed - -proposition - assumes "A : U(i)" and "B : U(i)" - shows "\<^bold>\x y. x : A \ B \ A" -by (routine add: assms) - -subsection \Function application\ - -proposition assumes "a : A" shows "(\<^bold>\x. x)`a \ a" -by (derive lems: assms) - -lemma - assumes "a : A" and "\x. x: A \ B(x): U(i)" - shows "(\<^bold>\x y. y)`a \ \<^bold>\y. y" -by (derive lems: assms) - -lemma "\A: U(i); B: U(i); a : A; b : B\ \ (\<^bold>\x y. y)`a`b \ b" -by derive - -lemma "\A: U(i); a : A\ \ (\<^bold>\x y. f x y)`a \ \<^bold>\y. f a y" -proof derive -oops \ \Missing some premises.\ - -lemma "\a : A; b : B(a); c : C(a)(b)\ \ (\<^bold>\x. \<^bold>\y. \<^bold>\z. f x y z)`a`b`c \ f a b c" -proof derive -oops - - -subsection \Currying functions\ - -proposition curried_function_formation: - assumes "A : U(i)" and "B: A \ U(i)" and "\x. C(x): B(x) \ U(i)" - shows "\x:A. \y:B(x). C x y : U(i)" -by (routine add: assms) - -proposition higher_order_currying_formation: - assumes - "A: U(i)" and "B: A \ U(i)" and - "\x y. y: B(x) \ C(x)(y): U(i)" and - "\x y z. z : C(x)(y) \ D(x)(y)(z): U(i)" - shows "\x:A. \y:B(x). \z:C(x)(y). D(x)(y)(z): U(i)" -by (routine add: assms) - -lemma curried_type_judgment: - assumes "A: U(i)" and "B: A \ U(i)" and "\x y. \x : A; y : B(x)\ \ f x y : C x y" - shows "\<^bold>\x y. f x y : \x:A. \y:B(x). C x y" -by (routine add: assms) - - -text \ -Polymorphic identity function is now trivial due to lambda expression polymorphism. -It was more involved in previous monomorphic incarnations. -\ - -lemma "x: A \ id`x \ x" -by derive - - -section \Natural numbers\ - -text \Automatic proof methods recognize natural numbers.\ - -proposition "succ(succ(succ 0)): \" by routine - - -end -- cgit v1.2.3