From 80edbd08e13200d2c080ac281d19948bbbcd92e0 Mon Sep 17 00:00:00 2001 From: Josh Chen Date: Mon, 25 May 2020 17:09:54 +0200 Subject: Reorganize theory structure. In particular, the identity type moves out from under Spartan to HoTT. Spartan now only has Pi and Sigma. --- spartan/core/Spartan.thy | 481 +++++++++++++++++++++++++++++++++++++++ spartan/core/congruence.ML | 16 ++ spartan/core/elimination.ML | 46 ++++ spartan/core/eqsubst.ML | 434 +++++++++++++++++++++++++++++++++++ spartan/core/equality.ML | 90 ++++++++ spartan/core/focus.ML | 125 ++++++++++ spartan/core/goals.ML | 214 +++++++++++++++++ spartan/core/implicits.ML | 78 +++++++ spartan/core/lib.ML | 145 ++++++++++++ spartan/core/rewrite.ML | 465 +++++++++++++++++++++++++++++++++++++ spartan/core/tactics.ML | 233 +++++++++++++++++++ spartan/data/List.thy | 6 + spartan/lib/congruence.ML | 16 -- spartan/lib/elimination.ML | 46 ---- spartan/lib/eqsubst.ML | 434 ----------------------------------- spartan/lib/equality.ML | 90 -------- spartan/lib/focus.ML | 125 ---------- spartan/lib/goals.ML | 214 ----------------- spartan/lib/implicits.ML | 78 ------- spartan/lib/lib.ML | 145 ------------ spartan/lib/rewrite.ML | 465 ------------------------------------- spartan/lib/tactics.ML | 233 ------------------- spartan/theories/Equivalence.thy | 416 --------------------------------- spartan/theories/Identity.thy | 464 ------------------------------------- spartan/theories/Spartan.thy | 481 --------------------------------------- 25 files changed, 2333 insertions(+), 3207 deletions(-) create mode 100644 spartan/core/Spartan.thy create mode 100644 spartan/core/congruence.ML create mode 100644 spartan/core/elimination.ML create mode 100644 spartan/core/eqsubst.ML create mode 100644 spartan/core/equality.ML create mode 100644 spartan/core/focus.ML create mode 100644 spartan/core/goals.ML create mode 100644 spartan/core/implicits.ML create mode 100644 spartan/core/lib.ML create mode 100644 spartan/core/rewrite.ML create mode 100644 spartan/core/tactics.ML create mode 100644 spartan/data/List.thy delete mode 100644 spartan/lib/congruence.ML delete mode 100644 spartan/lib/elimination.ML delete mode 100644 spartan/lib/eqsubst.ML delete mode 100644 spartan/lib/equality.ML delete mode 100644 spartan/lib/focus.ML delete mode 100644 spartan/lib/goals.ML delete mode 100644 spartan/lib/implicits.ML delete mode 100644 spartan/lib/lib.ML delete mode 100644 spartan/lib/rewrite.ML delete mode 100644 spartan/lib/tactics.ML delete mode 100644 spartan/theories/Equivalence.thy delete mode 100644 spartan/theories/Identity.thy delete mode 100644 spartan/theories/Spartan.thy (limited to 'spartan') diff --git a/spartan/core/Spartan.thy b/spartan/core/Spartan.thy new file mode 100644 index 0000000..b4f7772 --- /dev/null +++ b/spartan/core/Spartan.thy @@ -0,0 +1,481 @@ +text \Spartan type theory\ + +theory Spartan +imports + Pure + "HOL-Eisbach.Eisbach" + "HOL-Eisbach.Eisbach_Tools" +keywords + "Theorem" "Lemma" "Corollary" "Proposition" :: thy_goal_stmt and + "focus" "\" "\<^item>" "\<^enum>" "~" :: prf_script_goal % "proof" and + "derive" "prems" "vars":: quasi_command and + "print_coercions" :: thy_decl + +begin + + +section \Preamble\ + +declare [[eta_contract=false]] + + +section \Metatype setup\ + +typedecl o + + +section \Judgments\ + +judgment has_type :: \o \ o \ prop\ ("(2_:/ _)" 999) + + +section \Universes\ + +typedecl lvl \ \Universe levels\ + +axiomatization + O :: \lvl\ and + S :: \lvl \ lvl\ and + lt :: \lvl \ lvl \ prop\ (infix "<" 900) + where + O_min: "O < S i" and + lt_S: "i < S i" and + lt_trans: "i < j \ j < k \ i < k" + +axiomatization U :: \lvl \ o\ where + U_hierarchy: "i < j \ U i: U j" and + U_cumulative: "A: U i \ i < j \ A: U j" + +lemma U_in_U: + "U i: U (S i)" + by (rule U_hierarchy, rule lt_S) + +lemma lift_universe: + "A: U i \ A: U (S i)" + by (erule U_cumulative, rule lt_S) + + +section \\-type\ + +axiomatization + Pi :: \o \ (o \ o) \ o\ and + lam :: \o \ (o \ o) \ o\ and + app :: \o \ o \ o\ ("(1_ `_)" [120, 121] 120) + +syntax + "_Pi" :: \idt \ o \ o \ o\ ("(2\_: _./ _)" 30) + "_lam" :: \pttrns \ o \ o \ o\ ("(2\_: _./ _)" 30) + "_lam2" :: \pttrns \ o \ o \ o\ +translations + "\x: A. B" \ "CONST Pi A (\x. B)" + "\x xs: A. b" \ "CONST lam A (\x. _lam2 xs A b)" + "_lam2 x A b" \ "\x: A. b" + "\x: A. b" \ "CONST lam A (\x. b)" + +abbreviation Fn (infixr "\" 40) where "A \ B \ \_: A. B" + +axiomatization where + PiF: "\\x. x: A \ B x: U i; A: U i\ \ \x: A. B x: U i" and + + PiI: "\\x. x: A \ b x: B x; A: U i\ \ \x: A. b x: \x: A. B x" and + + PiE: "\f: \x: A. B x; a: A\ \ f `a: B a" and + + beta: "\a: A; \x. x: A \ b x: B x\ \ (\x: A. b x) `a \ b a" and + + eta: "f: \x: A. B x \ \x: A. f `x \ f" and + + Pi_cong: "\ + A: U i; + \x. x: A \ B x: U i; + \x. x: A \ B' x: U i; + \x. x: A \ B x \ B' x + \ \ \x: A. B x \ \x: A. B' x" and + + lam_cong: "\\x. x: A \ b x \ c x; A: U i\ \ \x: A. b x \ \x: A. c x" + + +section \\-type\ + +axiomatization + Sig :: \o \ (o \ o) \ o\ and + pair :: \o \ o \ o\ ("(2<_,/ _>)") and + SigInd :: \o \ (o \ o) \ (o \ o) \ (o \ o \ o) \ o \ o\ + +syntax "_Sum" :: \idt \ o \ o \ o\ ("(2\_: _./ _)" 20) + +translations "\x: A. B" \ "CONST Sig A (\x. B)" + +abbreviation Prod (infixl "\" 50) + where "A \ B \ \_: A. B" + +axiomatization where + SigF: "\\x. x: A \ B x: U i; A: U i\ \ \x: A. B x: U i" and + + SigI: "\\x. x: A \ B x: U i; a: A; b: B a\ \ : \x: A. B x" and + + SigE: "\ + p: \x: A. B x; + A: U i; + \x. x : A \ B x: U i; + \p. p: \x: A. B x \ C p: U i; + \x y. \x: A; y: B x\ \ f x y: C + \ \ SigInd A (\x. B x) (\p. C p) f p: C p" and + + Sig_comp: "\ + a: A; + b: B a; + \x. x: A \ B x: U i; + \p. p: \x: A. B x \ C p: U i; + \x y. \x: A; y: B x\ \ f x y: C + \ \ SigInd A (\x. B x) (\p. C p) f \ f a b" and + + Sig_cong: "\ + \x. x: A \ B x \ B' x; + A: U i; + \x. x : A \ B x: U i; + \x. x : A \ B' x: U i + \ \ \x: A. B x \ \x: A. B' x" + + +section \Proof commands\ + +named_theorems typechk + +ML_file \lib.ML\ +ML_file \goals.ML\ +ML_file \focus.ML\ + + +section \Congruence automation\ + +(*Potential to be retired*) +ML_file \congruence.ML\ + + +section \Methods\ + +ML_file \elimination.ML\ \ \declares the [elims] attribute\ + +named_theorems intros and comps +lemmas + [intros] = PiF PiI SigF SigI and + [elims "?f"] = PiE and + [elims "?p"] = SigE and + [comps] = beta Sig_comp and + [cong] = Pi_cong lam_cong Sig_cong + +ML_file \tactics.ML\ + +method_setup assumptions = + \Scan.succeed (fn ctxt => SIMPLE_METHOD ( + CHANGED (TRYALL (assumptions_tac ctxt))))\ + +method_setup known = + \Scan.succeed (fn ctxt => SIMPLE_METHOD ( + CHANGED (TRYALL (known_tac ctxt))))\ + +method_setup intro = + \Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (intro_tac ctxt)))\ + +method_setup intros = + \Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (intros_tac ctxt)))\ + +method_setup old_elim = + \Scan.option Args.term >> (fn tm => fn ctxt => + SIMPLE_METHOD' (SIDE_CONDS (old_elims_tac tm ctxt) ctxt))\ + +method_setup elim = + \Scan.repeat Args.term >> (fn tms => fn ctxt => + CONTEXT_METHOD (K (elim_context_tac tms ctxt 1)))\ + +method elims = elim+ + +(*This could possibly use additional simplification hints via a simp: modifier*) +method_setup typechk = + \Scan.succeed (fn ctxt => SIMPLE_METHOD' ( + SIDE_CONDS (typechk_tac ctxt) ctxt)) + (* CHANGED (ALLGOALS (TRY o typechk_tac ctxt)))) *)\ + +method_setup rule = + \Attrib.thms >> (fn ths => fn ctxt => + SIMPLE_METHOD (HEADGOAL (SIDE_CONDS (rule_tac ths ctxt) ctxt)))\ + +method_setup dest = + \Scan.lift (Scan.option (Args.parens Parse.int)) -- Attrib.thms + >> (fn (opt_n, ths) => fn ctxt => + SIMPLE_METHOD (HEADGOAL (SIDE_CONDS (dest_tac opt_n ths ctxt) ctxt)))\ + +subsection \Reflexivity\ + +named_theorems refl +method refl = (rule refl) + +subsection \Trivial proofs modulo typechecking\ + +method_setup this = + \Scan.succeed (fn ctxt => METHOD ( + EVERY o map (HEADGOAL o + (fn ths => SIDE_CONDS (resolve_tac ctxt ths) ctxt) o + single) + ))\ + +subsection \Rewriting\ + +\ \\subst\ method\ +ML_file "~~/src/Tools/misc_legacy.ML" +ML_file "~~/src/Tools/IsaPlanner/isand.ML" +ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML" +ML_file "~~/src/Tools/IsaPlanner/zipper.ML" +ML_file "eqsubst.ML" + +\ \\rewrite\ method\ +consts rewrite_HOLE :: "'a::{}" ("\") + +lemma eta_expand: + fixes f :: "'a::{} \ 'b::{}" + shows "f \ \x. f x" . + +lemma rewr_imp: + assumes "PROP A \ PROP B" + shows "(PROP A \ PROP C) \ (PROP B \ PROP C)" + apply (rule Pure.equal_intr_rule) + apply (drule equal_elim_rule2[OF assms]; assumption) + apply (drule equal_elim_rule1[OF assms]; assumption) + done + +lemma imp_cong_eq: + "(PROP A \ (PROP B \ PROP C) \ (PROP B' \ PROP C')) \ + ((PROP B \ PROP A \ PROP C) \ (PROP B' \ PROP A \ PROP C'))" + apply (Pure.intro Pure.equal_intr_rule) + apply (drule (1) cut_rl; drule Pure.equal_elim_rule1 Pure.equal_elim_rule2; + assumption)+ + apply (drule Pure.equal_elim_rule1 Pure.equal_elim_rule2; assumption)+ + done + +ML_file \~~/src/HOL/Library/cconv.ML\ +ML_file \rewrite.ML\ + +\ \\reduce\ computes terms via judgmental equalities\ +setup \map_theory_simpset (fn ctxt => ctxt addSolver (mk_solver "" typechk_tac))\ + +method reduce uses add = (simp add: comps add | subst comps)+ + + +section \Implicit notations\ + +text \ + \?\ is used to mark implicit arguments in definitions, while \{}\ is expanded + immediately for elaboration in statements. +\ + +consts + iarg :: \'a\ ("?") + hole :: \'b\ ("{}") + +ML_file \implicits.ML\ + +attribute_setup implicit = \Scan.succeed Implicits.implicit_defs_attr\ + +ML \ +val _ = Context.>> + (Syntax_Phases.term_check 1 "" (fn ctxt => map (Implicits.make_holes ctxt))) +\ + +text \Automatically insert inhabitation judgments where needed:\ + +consts inhabited :: \o \ prop\ ("(_)") +translations "CONST inhabited A" \ "CONST has_type {} A" + + +section \Lambda coercion\ + +\ \Coerce object lambdas to meta-lambdas\ +abbreviation (input) lambda :: \o \ o \ o\ + where "lambda f \ \x. f `x" + +ML_file \~~/src/Tools/subtyping.ML\ +declare [[coercion_enabled, coercion lambda]] + +translations "f x" \ "f `x" + + +section \Functions\ + +lemma eta_exp: + assumes "f: \x: A. B x" + shows "f \ \x: A. f x" + by (rule eta[symmetric]) + +lemma lift_universe_codomain: + assumes "A: U i" "f: A \ U j" + shows "f: A \ U (S j)" + apply (sub eta_exp) + apply known + apply (Pure.rule intros; rule lift_universe) + done + +subsection \Function composition\ + +definition "funcomp A g f \ \x: A. g `(f `x)" + +syntax + "_funcomp" :: \o \ o \ o \ o\ ("(2_ \\<^bsub>_\<^esub>/ _)" [111, 0, 110] 110) +translations + "g \\<^bsub>A\<^esub> f" \ "CONST funcomp A g f" + +lemma funcompI [typechk]: + assumes + "A: U i" + "B: U i" + "\x. x: B \ C x: U i" + "f: A \ B" + "g: \x: B. C x" + shows + "g \\<^bsub>A\<^esub> f: \x: A. C (f x)" + unfolding funcomp_def by typechk + +lemma funcomp_assoc [comps]: + assumes + "f: A \ B" + "g: B \ C" + "h: \x: C. D x" + "A: U i" + shows + "(h \\<^bsub>B\<^esub> g) \\<^bsub>A\<^esub> f \ h \\<^bsub>A\<^esub> g \\<^bsub>A\<^esub> f" + unfolding funcomp_def by reduce + +lemma funcomp_lambda_comp [comps]: + assumes + "A: U i" + "\x. x: A \ b x: B" + "\x. x: B \ c x: C x" + shows + "(\x: B. c x) \\<^bsub>A\<^esub> (\x: A. b x) \ \x: A. c (b x)" + unfolding funcomp_def by reduce + +lemma funcomp_apply_comp [comps]: + assumes + "f: A \ B" "g: \x: B. C x" + "x: A" + "A: U i" "B: U i" + "\x y. x: B \ C x: U i" + shows "(g \\<^bsub>A\<^esub> f) x \ g (f x)" + unfolding funcomp_def by reduce + +text \Notation:\ + +definition funcomp_i (infixr "\" 120) + where [implicit]: "funcomp_i g f \ g \\<^bsub>?\<^esub> f" + +translations "g \ f" \ "g \\<^bsub>A\<^esub> f" + +subsection \Identity function\ + +abbreviation id where "id A \ \x: A. x" + +lemma + id_type[typechk]: "A: U i \ id A: A \ A" and + id_comp [comps]: "x: A \ (id A) x \ x" \ \for the occasional manual rewrite\ + by reduce + +lemma id_left [comps]: + assumes "f: A \ B" "A: U i" "B: U i" + shows "(id B) \\<^bsub>A\<^esub> f \ f" + by (subst eta_exp[of f]) (reduce, rule eta) + +lemma id_right [comps]: + assumes "f: A \ B" "A: U i" "B: U i" + shows "f \\<^bsub>A\<^esub> (id A) \ f" + by (subst eta_exp[of f]) (reduce, rule eta) + +lemma id_U [typechk]: + "id (U i): U i \ U i" + by typechk (fact U_in_U) + + +section \Pairs\ + +definition "fst A B \ \p: \x: A. B x. SigInd A B (\_. A) (\x y. x) p" +definition "snd A B \ \p: \x: A. B x. SigInd A B (\p. B (fst A B p)) (\x y. y) p" + +lemma fst_type [typechk]: + assumes "A: U i" "\x. x: A \ B x: U i" + shows "fst A B: (\x: A. B x) \ A" + unfolding fst_def by typechk + +lemma fst_comp [comps]: + assumes + "a: A" + "b: B a" + "A: U i" + "\x. x: A \ B x: U i" + shows "fst A B \ a" + unfolding fst_def by reduce + +lemma snd_type [typechk]: + assumes "A: U i" "\x. x: A \ B x: U i" + shows "snd A B: \p: \x: A. B x. B (fst A B p)" + unfolding snd_def by typechk reduce + +lemma snd_comp [comps]: + assumes "a: A" "b: B a" "A: U i" "\x. x: A \ B x: U i" + shows "snd A B \ b" + unfolding snd_def by reduce + +subsection \Notation\ + +definition fst_i ("fst") + where [implicit]: "fst \ Spartan.fst ? ?" + +definition snd_i ("snd") + where [implicit]: "snd \ Spartan.snd ? ?" + +translations + "fst" \ "CONST Spartan.fst A B" + "snd" \ "CONST Spartan.snd A B" + +subsection \Projections\ + +Lemma fst [typechk]: + assumes + "p: \x: A. B x" + "A: U i" "\x. x: A \ B x: U i" + shows "fst p: A" + by typechk + +Lemma snd [typechk]: + assumes + "p: \x: A. B x" + "A: U i" "\x. x: A \ B x: U i" + shows "snd p: B (fst p)" + by typechk + +method fst for p::o = rule fst[of p] +method snd for p::o = rule snd[of p] + +subsection \Properties of \\ + +Lemma (derive) Sig_dist_exp: + assumes + "p: \x: A. B x \ C x" + "A: U i" + "\x. x: A \ B x: U i" + "\x. x: A \ C x: U i" + shows "(\x: A. B x) \ (\x: A. C x)" + apply (elim p) + focus vars x y + apply intro + \ apply intro + apply assumption + apply (fst y) + done + \ apply intro + apply assumption + apply (snd y) + done + done + done + + +end diff --git a/spartan/core/congruence.ML b/spartan/core/congruence.ML new file mode 100644 index 0000000..bb7348c --- /dev/null +++ b/spartan/core/congruence.ML @@ -0,0 +1,16 @@ +signature Sym_Attr_Data = +sig + val name: string + val symmetry_rule: thm +end + +functor Sym_Attr (D: Sym_Attr_Data) = +struct + local + val distinct_prems = the_single o Seq.list_of o Tactic.distinct_subgoals_tac + in + val attr = Thm.rule_attribute [] + (K (fn th => distinct_prems (th RS D.symmetry_rule) handle THM _ => th)) + val setup = Attrib.setup (Binding.name D.name) (Scan.succeed attr) "" + end +end diff --git a/spartan/core/elimination.ML b/spartan/core/elimination.ML new file mode 100644 index 0000000..617f83e --- /dev/null +++ b/spartan/core/elimination.ML @@ -0,0 +1,46 @@ +(* Title: elimination.ML + Author: Joshua Chen + +Type elimination setup. +*) + +structure Elim: sig + +val rules: Proof.context -> (thm * indexname list) list +val lookup_rule: Proof.context -> Termtab.key -> (thm * indexname list) option +val register_rule: term list -> thm -> Context.generic -> Context.generic + +end = struct + +(** Context data **) + +(* Elimination rule data *) + +(*Stores elimination rules together with a list of the indexnames of the + variables each rule eliminates. Keyed by head of the type being eliminated.*) +structure Rules = Generic_Data ( + type T = (thm * indexname list) Termtab.table + val empty = Termtab.empty + val extend = I + val merge = Termtab.merge (eq_fst Thm.eq_thm_prop) +) + +fun rules ctxt = map (op #2) (Termtab.dest (Rules.get (Context.Proof ctxt))) +fun lookup_rule ctxt = Termtab.lookup (Rules.get (Context.Proof ctxt)) +fun register_rule tms rl = + let val hd = Term.head_of (Lib.type_of_typing (Thm.major_prem_of rl)) + in Rules.map (Termtab.update (hd, (rl, map (#1 o dest_Var) tms))) end + + +(* [elims] attribute *) +val _ = Theory.setup ( + Attrib.setup \<^binding>\elims\ + (Scan.repeat Args.term_pattern >> + (Thm.declaration_attribute o register_rule)) + "" + #> Global_Theory.add_thms_dynamic (\<^binding>\elims\, + fn context => (map #1 (rules (Context.proof_of context)))) +) + + +end diff --git a/spartan/core/eqsubst.ML b/spartan/core/eqsubst.ML new file mode 100644 index 0000000..ea6f098 --- /dev/null +++ b/spartan/core/eqsubst.ML @@ -0,0 +1,434 @@ +(* Title: eqsubst.ML + Author: Lucas Dixon, University of Edinburgh + Modified: Joshua Chen, University of Innsbruck + +Perform a substitution using an equation. + +This code is slightly modified from the original at Tools/eqsubst..ML, +to incorporate auto-typechecking for type theory. +*) + +signature EQSUBST = +sig + type match = + ((indexname * (sort * typ)) list (* type instantiations *) + * (indexname * (typ * term)) list) (* term instantiations *) + * (string * typ) list (* fake named type abs env *) + * (string * typ) list (* type abs env *) + * term (* outer term *) + + type searchinfo = + Proof.context + * int (* maxidx *) + * Zipper.T (* focusterm to search under *) + + datatype 'a skipseq = SkipMore of int | SkipSeq of 'a Seq.seq Seq.seq + + val skip_first_asm_occs_search: ('a -> 'b -> 'c Seq.seq Seq.seq) -> 'a -> int -> 'b -> 'c skipseq + val skip_first_occs_search: int -> ('a -> 'b -> 'c Seq.seq Seq.seq) -> 'a -> 'b -> 'c Seq.seq + val skipto_skipseq: int -> 'a Seq.seq Seq.seq -> 'a skipseq + + (* tactics *) + val eqsubst_asm_tac: Proof.context -> int list -> thm list -> int -> tactic + val eqsubst_asm_tac': Proof.context -> + (searchinfo -> int -> term -> match skipseq) -> int -> thm -> int -> tactic + val eqsubst_tac: Proof.context -> + int list -> (* list of occurrences to rewrite, use [0] for any *) + thm list -> int -> tactic + val eqsubst_tac': Proof.context -> + (searchinfo -> term -> match Seq.seq) (* search function *) + -> thm (* equation theorem to rewrite with *) + -> int (* subgoal number in goal theorem *) + -> thm (* goal theorem *) + -> thm Seq.seq (* rewritten goal theorem *) + + (* search for substitutions *) + val valid_match_start: Zipper.T -> bool + val search_lr_all: Zipper.T -> Zipper.T Seq.seq + val search_lr_valid: (Zipper.T -> bool) -> Zipper.T -> Zipper.T Seq.seq + val searchf_lr_unify_all: searchinfo -> term -> match Seq.seq Seq.seq + val searchf_lr_unify_valid: searchinfo -> term -> match Seq.seq Seq.seq + val searchf_bt_unify_valid: searchinfo -> term -> match Seq.seq Seq.seq +end; + +structure EqSubst: EQSUBST = +struct + +(* changes object "=" to meta "==" which prepares a given rewrite rule *) +fun prep_meta_eq ctxt = + Simplifier.mksimps ctxt #> map Drule.zero_var_indexes; + +(* make free vars into schematic vars with index zero *) +fun unfix_frees frees = + fold (K (Thm.forall_elim_var 0)) frees o Drule.forall_intr_list frees; + + +type match = + ((indexname * (sort * typ)) list (* type instantiations *) + * (indexname * (typ * term)) list) (* term instantiations *) + * (string * typ) list (* fake named type abs env *) + * (string * typ) list (* type abs env *) + * term; (* outer term *) + +type searchinfo = + Proof.context + * int (* maxidx *) + * Zipper.T; (* focusterm to search under *) + + +(* skipping non-empty sub-sequences but when we reach the end + of the seq, remembering how much we have left to skip. *) +datatype 'a skipseq = + SkipMore of int | + SkipSeq of 'a Seq.seq Seq.seq; + +(* given a seqseq, skip the first m non-empty seq's, note deficit *) +fun skipto_skipseq m s = + let + fun skip_occs n sq = + (case Seq.pull sq of + NONE => SkipMore n + | SOME (h, t) => + (case Seq.pull h of + NONE => skip_occs n t + | SOME _ => if n <= 1 then SkipSeq (Seq.cons h t) else skip_occs (n - 1) t)) + in skip_occs m s end; + +(* note: outerterm is the taget with the match replaced by a bound + variable : ie: "P lhs" beocmes "%x. P x" + insts is the types of instantiations of vars in lhs + and typinsts is the type instantiations of types in the lhs + Note: Final rule is the rule lifted into the ontext of the + taget thm. *) +fun mk_foo_match mkuptermfunc Ts t = + let + val ty = Term.type_of t + val bigtype = rev (map snd Ts) ---> ty + fun mk_foo 0 t = t + | mk_foo i t = mk_foo (i - 1) (t $ (Bound (i - 1))) + val num_of_bnds = length Ts + (* foo_term = "fooabs y0 ... yn" where y's are local bounds *) + val foo_term = mk_foo num_of_bnds (Bound num_of_bnds) + in Abs ("fooabs", bigtype, mkuptermfunc foo_term) end; + +(* T is outer bound vars, n is number of locally bound vars *) +(* THINK: is order of Ts correct...? or reversed? *) +fun mk_fake_bound_name n = ":b_" ^ n; +fun fakefree_badbounds Ts t = + let val (FakeTs, Ts, newnames) = + fold_rev (fn (n, ty) => fn (FakeTs, Ts, usednames) => + let + val newname = singleton (Name.variant_list usednames) n + in + ((mk_fake_bound_name newname, ty) :: FakeTs, + (newname, ty) :: Ts, + newname :: usednames) + end) Ts ([], [], []) + in (FakeTs, Ts, Term.subst_bounds (map Free FakeTs, t)) end; + +(* before matching we need to fake the bound vars that are missing an + abstraction. In this function we additionally construct the + abstraction environment, and an outer context term (with the focus + abstracted out) for use in rewriting with RW_Inst.rw *) +fun prep_zipper_match z = + let + val t = Zipper.trm z + val c = Zipper.ctxt z + val Ts = Zipper.C.nty_ctxt c + val (FakeTs', Ts', t') = fakefree_badbounds Ts t + val absterm = mk_foo_match (Zipper.C.apply c) Ts' t' + in + (t', (FakeTs', Ts', absterm)) + end; + +(* Unification with exception handled *) +(* given context, max var index, pat, tgt; returns Seq of instantiations *) +fun clean_unify ctxt ix (a as (pat, tgt)) = + let + (* type info will be re-derived, maybe this can be cached + for efficiency? *) + val pat_ty = Term.type_of pat; + val tgt_ty = Term.type_of tgt; + (* FIXME is it OK to ignore the type instantiation info? + or should I be using it? *) + val typs_unify = + SOME (Sign.typ_unify (Proof_Context.theory_of ctxt) (pat_ty, tgt_ty) (Vartab.empty, ix)) + handle Type.TUNIFY => NONE; + in + (case typs_unify of + SOME (typinsttab, ix2) => + let + (* FIXME is it right to throw away the flexes? + or should I be using them somehow? *) + fun mk_insts env = + (Vartab.dest (Envir.type_env env), + Vartab.dest (Envir.term_env env)); + val initenv = + Envir.Envir {maxidx = ix2, tenv = Vartab.empty, tyenv = typinsttab}; + val useq = Unify.smash_unifiers (Context.Proof ctxt) [a] initenv + handle ListPair.UnequalLengths => Seq.empty + | Term.TERM _ => Seq.empty; + fun clean_unify' useq () = + (case (Seq.pull useq) of + NONE => NONE + | SOME (h, t) => SOME (mk_insts h, Seq.make (clean_unify' t))) + handle ListPair.UnequalLengths => NONE + | Term.TERM _ => NONE; + in + (Seq.make (clean_unify' useq)) + end + | NONE => Seq.empty) + end; + +(* Unification for zippers *) +(* Note: Ts is a modified version of the original names of the outer + bound variables. New names have been introduced to make sure they are + unique w.r.t all names in the term and each other. usednames' is + oldnames + new names. *) +fun clean_unify_z ctxt maxidx pat z = + let val (t, (FakeTs, Ts, absterm)) = prep_zipper_match z in + Seq.map (fn insts => (insts, FakeTs, Ts, absterm)) + (clean_unify ctxt maxidx (t, pat)) + end; + + +fun bot_left_leaf_of (l $ _) = bot_left_leaf_of l + | bot_left_leaf_of (Abs (_, _, t)) = bot_left_leaf_of t + | bot_left_leaf_of x = x; + +(* Avoid considering replacing terms which have a var at the head as + they always succeed trivially, and uninterestingly. *) +fun valid_match_start z = + (case bot_left_leaf_of (Zipper.trm z) of + Var _ => false + | _ => true); + +(* search from top, left to right, then down *) +val search_lr_all = ZipperSearch.all_bl_ur; + +(* search from top, left to right, then down *) +fun search_lr_valid validf = + let + fun sf_valid_td_lr z = + let val here = if validf z then [Zipper.Here z] else [] in + (case Zipper.trm z of + _ $ _ => + [Zipper.LookIn (Zipper.move_down_left z)] @ here @ + [Zipper.LookIn (Zipper.move_down_right z)] + | Abs _ => here @ [Zipper.LookIn (Zipper.move_down_abs z)] + | _ => here) + end; + in Zipper.lzy_search sf_valid_td_lr end; + +(* search from bottom to top, left to right *) +fun search_bt_valid validf = + let + fun sf_valid_td_lr z = + let val here = if validf z then [Zipper.Here z] else [] in + (case Zipper.trm z of + _ $ _ => + [Zipper.LookIn (Zipper.move_down_left z), + Zipper.LookIn (Zipper.move_down_right z)] @ here + | Abs _ => [Zipper.LookIn (Zipper.move_down_abs z)] @ here + | _ => here) + end; + in Zipper.lzy_search sf_valid_td_lr end; + +fun searchf_unify_gen f (ctxt, maxidx, z) lhs = + Seq.map (clean_unify_z ctxt maxidx lhs) (Zipper.limit_apply f z); + +(* search all unifications *) +val searchf_lr_unify_all = searchf_unify_gen search_lr_all; + +(* search only for 'valid' unifiers (non abs subterms and non vars) *) +val searchf_lr_unify_valid = searchf_unify_gen (search_lr_valid valid_match_start); + +val searchf_bt_unify_valid = searchf_unify_gen (search_bt_valid valid_match_start); + +(* apply a substitution in the conclusion of the theorem *) +(* cfvs are certified free var placeholders for goal params *) +(* conclthm is a theorem of for just the conclusion *) +(* m is instantiation/match information *) +(* rule is the equation for substitution *) +fun apply_subst_in_concl ctxt i st (cfvs, conclthm) rule m = + RW_Inst.rw ctxt m rule conclthm + |> unfix_frees cfvs + |> Conv.fconv_rule Drule.beta_eta_conversion + |> (fn r => resolve_tac ctxt [r] i st); + +(* substitute within the conclusion of goal i of gth, using a meta +equation rule. Note that we assume rule has var indicies zero'd *) +fun prep_concl_subst ctxt i gth = + let + val th = Thm.incr_indexes 1 gth; + val tgt_term = Thm.prop_of th; + + val (fixedbody, fvs) = IsaND.fix_alls_term ctxt i tgt_term; + val cfvs = rev (map (Thm.cterm_of ctxt) fvs); + + val conclterm = Logic.strip_imp_concl fixedbody; + val conclthm = Thm.trivial (Thm.cterm_of ctxt conclterm); + val maxidx = Thm.maxidx_of th; + val ft = + (Zipper.move_down_right (* ==> *) + o Zipper.move_down_left (* Trueprop *) + o Zipper.mktop + o Thm.prop_of) conclthm + in + ((cfvs, conclthm), (ctxt, maxidx, ft)) + end; + +(* substitute using an object or meta level equality *) +fun eqsubst_tac' ctxt searchf instepthm i st = + let + val (cvfsconclthm, searchinfo) = prep_concl_subst ctxt i st; + val stepthms = Seq.of_list (prep_meta_eq ctxt instepthm); + fun rewrite_with_thm r = + let val (lhs,_) = Logic.dest_equals (Thm.concl_of r) in + searchf searchinfo lhs + |> Seq.maps (apply_subst_in_concl ctxt i st cvfsconclthm r) + end; + in stepthms |> Seq.maps rewrite_with_thm end; + + +(* General substitution of multiple occurrences using one of + the given theorems *) + +fun skip_first_occs_search occ srchf sinfo lhs = + (case skipto_skipseq occ (srchf sinfo lhs) of + SkipMore _ => Seq.empty + | SkipSeq ss => Seq.flat ss); + +(* The "occs" argument is a list of integers indicating which occurrence +w.r.t. the search order, to rewrite. Backtracking will also find later +occurrences, but all earlier ones are skipped. Thus you can use [0] to +just find all rewrites. *) + +fun eqsubst_tac ctxt occs thms i st = + let val nprems = Thm.nprems_of st in + if nprems < i then Seq.empty else + let + val thmseq = Seq.of_list thms; + fun apply_occ occ st = + thmseq |> Seq.maps (fn r => + eqsubst_tac' ctxt + (skip_first_occs_search occ searchf_lr_unify_valid) r + (i + (Thm.nprems_of st - nprems)) st); + val sorted_occs = Library.sort (rev_order o int_ord) occs; + in + Seq.maps distinct_subgoals_tac (Seq.EVERY (map apply_occ sorted_occs) st) + end + end; + + +(* apply a substitution inside assumption j, keeps asm in the same place *) +fun apply_subst_in_asm ctxt i st rule ((cfvs, j, _, pth),m) = + let + val st2 = Thm.rotate_rule (j - 1) i st; (* put premice first *) + val preelimrule = + RW_Inst.rw ctxt m rule pth + |> (Seq.hd o prune_params_tac ctxt) + |> Thm.permute_prems 0 ~1 (* put old asm first *) + |> unfix_frees cfvs (* unfix any global params *) + |> Conv.fconv_rule Drule.beta_eta_conversion; (* normal form *) + in + (* ~j because new asm starts at back, thus we subtract 1 *) + Seq.map (Thm.rotate_rule (~ j) (Thm.nprems_of rule + i)) + (dresolve_tac ctxt [preelimrule] i st2) + end; + + +(* prepare to substitute within the j'th premise of subgoal i of gth, +using a meta-level equation. Note that we assume rule has var indicies +zero'd. Note that we also assume that premt is the j'th premice of +subgoal i of gth. Note the repetition of work done for each +assumption, i.e. this can be made more efficient for search over +multiple assumptions. *) +fun prep_subst_in_asm ctxt i gth j = + let + val th = Thm.incr_indexes 1 gth; + val tgt_term = Thm.prop_of th; + + val (fixedbody, fvs) = IsaND.fix_alls_term ctxt i tgt_term; + val cfvs = rev (map (Thm.cterm_of ctxt) fvs); + + val asmt = nth (Logic.strip_imp_prems fixedbody) (j - 1); + val asm_nprems = length (Logic.strip_imp_prems asmt); + + val pth = Thm.trivial ((Thm.cterm_of ctxt) asmt); + val maxidx = Thm.maxidx_of th; + + val ft = + (Zipper.move_down_right (* trueprop *) + o Zipper.mktop + o Thm.prop_of) pth + in ((cfvs, j, asm_nprems, pth), (ctxt, maxidx, ft)) end; + +(* prepare subst in every possible assumption *) +fun prep_subst_in_asms ctxt i gth = + map (prep_subst_in_asm ctxt i gth) + ((fn l => Library.upto (1, length l)) + (Logic.prems_of_goal (Thm.prop_of gth) i)); + + +(* substitute in an assumption using an object or meta level equality *) +fun eqsubst_asm_tac' ctxt searchf skipocc instepthm i st = + let + val asmpreps = prep_subst_in_asms ctxt i st; + val stepthms = Seq.of_list (prep_meta_eq ctxt instepthm); + fun rewrite_with_thm r = + let + val (lhs,_) = Logic.dest_equals (Thm.concl_of r); + fun occ_search occ [] = Seq.empty + | occ_search occ ((asminfo, searchinfo)::moreasms) = + (case searchf searchinfo occ lhs of + SkipMore i => occ_search i moreasms + | SkipSeq ss => + Seq.append (Seq.map (Library.pair asminfo) (Seq.flat ss)) + (occ_search 1 moreasms)) (* find later substs also *) + in + occ_search skipocc asmpreps |> Seq.maps (apply_subst_in_asm ctxt i st r) + end; + in stepthms |> Seq.maps rewrite_with_thm end; + + +fun skip_first_asm_occs_search searchf sinfo occ lhs = + skipto_skipseq occ (searchf sinfo lhs); + +fun eqsubst_asm_tac ctxt occs thms i st = + let val nprems = Thm.nprems_of st in + if nprems < i then Seq.empty + else + let + val thmseq = Seq.of_list thms; + fun apply_occ occ st = + thmseq |> Seq.maps (fn r => + eqsubst_asm_tac' ctxt + (skip_first_asm_occs_search searchf_lr_unify_valid) occ r + (i + (Thm.nprems_of st - nprems)) st); + val sorted_occs = Library.sort (rev_order o int_ord) occs; + in + Seq.maps distinct_subgoals_tac (Seq.EVERY (map apply_occ sorted_occs) st) + end + end; + +(* combination method that takes a flag (true indicates that subst + should be done to an assumption, false = apply to the conclusion of + the goal) as well as the theorems to use *) +val _ = + Theory.setup + (Method.setup \<^binding>\sub\ + (Scan.lift (Args.mode "asm" -- Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0]) -- + Attrib.thms >> (fn ((asm, occs), inthms) => fn ctxt => + SIMPLE_METHOD' ((if asm then eqsubst_asm_tac else eqsubst_tac) ctxt occs inthms))) + "single-step substitution" + #> + (Method.setup \<^binding>\subst\ + (Scan.lift (Args.mode "asm" -- Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0]) -- + Attrib.thms >> (fn ((asm, occs), inthms) => fn ctxt => + SIMPLE_METHOD' (SIDE_CONDS + ((if asm then eqsubst_asm_tac else eqsubst_tac) ctxt occs inthms) + ctxt))) + "single-step substitution with auto-typechecking")) + +end; diff --git a/spartan/core/equality.ML b/spartan/core/equality.ML new file mode 100644 index 0000000..023147b --- /dev/null +++ b/spartan/core/equality.ML @@ -0,0 +1,90 @@ +(* Title: equality.ML + Author: Joshua Chen + +Equality reasoning with identity types. +*) + +structure Equality: +sig + +val dest_Id: term -> term * term * term + +val push_hyp_tac: term * term -> Proof.context -> int -> tactic +val induction_tac: term -> term -> term -> term -> Proof.context -> tactic +val equality_context_tac: Facts.ref -> Proof.context -> context_tactic + +end = struct + +fun dest_Id tm = case tm of + Const (\<^const_name>\Id\, _) $ A $ x $ y => (A, x, y) + | _ => error "dest_Id" + +(*Context assumptions that have already been pushed into the type family*) +structure Inserts = Proof_Data ( + type T = term Item_Net.T + val init = K (Item_Net.init Term.aconv_untyped single) +) + +fun push_hyp_tac (t, _) = + Subgoal.FOCUS_PARAMS (fn {context = ctxt, concl, ...} => + let + val (_, C) = Lib.dest_typing (Thm.term_of concl) + val B = Thm.cterm_of ctxt (Lib.lambda_var t C) + val a = Thm.cterm_of ctxt t + (*The resolvent is PiE[where ?B=B and ?a=a]*) + val resolvent = + Drule.infer_instantiate' ctxt [NONE, NONE, SOME B, SOME a] @{thm PiE} + in + HEADGOAL (resolve_tac ctxt [resolvent]) + THEN SOMEGOAL (known_tac ctxt) + end) + +fun induction_tac p A x y ctxt = + let + val [p, A, x, y] = map (Thm.cterm_of ctxt) [p, A, x, y] + in + HEADGOAL (resolve_tac ctxt + [Drule.infer_instantiate' ctxt [SOME p, SOME A, SOME x, SOME y] @{thm IdE}]) + end + +val side_conds_tac = TRY oo typechk_tac + +fun equality_context_tac fact ctxt = + let + val eq_th = Proof_Context.get_fact_single ctxt fact + val (p, (A, x, y)) = (Lib.dest_typing ##> dest_Id) (Thm.prop_of eq_th) + + val hyps = + Facts.props (Proof_Context.facts_of ctxt) + |> filter (fn (th, _) => Lib.is_typing (Thm.prop_of th)) + |> map (Lib.dest_typing o Thm.prop_of o fst) + |> filter_out (fn (t, _) => + Term.aconv (t, p) orelse Item_Net.member (Inserts.get ctxt) t) + |> map (fn (t, T) => ((t, T), Lib.subterm_count_distinct [p, x, y] T)) + |> filter (fn (_, i) => i > 0) + (*`t1: T1` comes before `t2: T2` if T1 contains t2 as subterm. + If they are incomparable, then order by decreasing + `subterm_count [p, x, y] T`*) + |> sort (fn (((t1, _), i), ((_, T2), j)) => + Lib.cond_order (Lib.subterm_order T2 t1) (int_ord (j, i))) + |> map #1 + + val record_inserts = + Inserts.map (fold (fn (t, _) => fn net => Item_Net.update t net) hyps) + + val tac = + fold (fn hyp => fn tac => tac THEN HEADGOAL (push_hyp_tac hyp ctxt)) + hyps all_tac + THEN ( + induction_tac p A x y ctxt + THEN RANGE (replicate 3 (typechk_tac ctxt) @ [side_conds_tac ctxt]) 1 + ) + THEN ( + REPEAT_DETERM_N (length hyps) (SOMEGOAL (resolve_tac ctxt @{thms PiI})) + THEN ALLGOALS (side_conds_tac ctxt) + ) + in + fn (ctxt, st) => Context_Tactic.TACTIC_CONTEXT (record_inserts ctxt) (tac st) + end + +end diff --git a/spartan/core/focus.ML b/spartan/core/focus.ML new file mode 100644 index 0000000..1d8de78 --- /dev/null +++ b/spartan/core/focus.ML @@ -0,0 +1,125 @@ +(* Title: focus.ML + Author: Makarius Wenzel, Joshua Chen + +A modified version of the Isar `subgoal` command +that keeps schematic variables in the goal state. + +Modified from code originally written by Makarius Wenzel. +*) + +local + +fun param_bindings ctxt (param_suffix, raw_param_specs) st = + let + val _ = if Thm.no_prems st then error "No subgoals!" else () + val subgoal = #1 (Logic.dest_implies (Thm.prop_of st)) + val subgoal_params = + map (apfst (Name.internal o Name.clean)) (Term.strip_all_vars subgoal) + |> Term.variant_frees subgoal |> map #1 + + val n = length subgoal_params + val m = length raw_param_specs + val _ = + m <= n orelse + error ("Excessive subgoal parameter specification" ^ + Position.here_list (map snd (drop n raw_param_specs))) + + val param_specs = + raw_param_specs |> map + (fn (NONE, _) => NONE + | (SOME x, pos) => + let + val b = #1 (#1 (Proof_Context.cert_var (Binding.make (x, pos), NONE, NoSyn) ctxt)) + val _ = Variable.check_name b + in SOME b end) + |> param_suffix ? append (replicate (n - m) NONE) + + fun bindings (SOME x :: xs) (_ :: ys) = x :: bindings xs ys + | bindings (NONE :: xs) (y :: ys) = Binding.name y :: bindings xs ys + | bindings _ ys = map Binding.name ys + in bindings param_specs subgoal_params end + +fun gen_schematic_subgoal prep_atts raw_result_binding raw_prems_binding param_specs state = + let + val _ = Proof.assert_backward state + + val state1 = state + |> Proof.map_context (Proof_Context.set_mode Proof_Context.mode_schematic) + |> Proof.refine_insert [] + + val {context = ctxt, facts = facts, goal = st} = Proof.raw_goal state1 + + val result_binding = apsnd (map (prep_atts ctxt)) raw_result_binding + val (prems_binding, do_prems) = + (case raw_prems_binding of + SOME (b, raw_atts) => ((b, map (prep_atts ctxt) raw_atts), true) + | NONE => (Binding.empty_atts, false)) + + val (subgoal_focus, _) = + (if do_prems then Subgoal.focus_prems else Subgoal.focus_params) ctxt + 1 (SOME (param_bindings ctxt param_specs st)) st + + fun after_qed (ctxt'', [[result]]) = + Proof.end_block #> (fn state' => + let + val ctxt' = Proof.context_of state' + val results' = + Proof_Context.export ctxt'' ctxt' (Conjunction.elim_conjunctions result) + in + state' + |> Proof.refine_primitive (fn _ => fn _ => + Subgoal.retrofit ctxt'' ctxt' (#params subgoal_focus) (#asms subgoal_focus) 1 + (Goal.protect 0 result) st + |> Seq.hd) + |> Proof.map_context + (#2 o Proof_Context.note_thmss "" [(result_binding, [(results', [])])]) + end) + #> Proof.reset_facts + #> Proof.enter_backward + in + state1 + |> Proof.enter_forward + |> Proof.using_facts [] + |> Proof.begin_block + |> Proof.map_context (fn _ => + #context subgoal_focus + |> Proof_Context.note_thmss "" [(prems_binding, [(#prems subgoal_focus, [])])] |> #2) + |> Proof.internal_goal (K (K ())) (Proof_Context.get_mode ctxt) true "subgoal" + NONE after_qed [] [] [(Binding.empty_atts, [(Thm.term_of (#concl subgoal_focus), [])])] |> #2 + |> Proof.using_facts facts + |> pair subgoal_focus + end + +val opt_fact_binding = + Scan.optional (Parse.binding -- Parse.opt_attribs || Parse.attribs >> pair Binding.empty) + Binding.empty_atts + +val for_params = + Scan.optional + (\<^keyword>\vars\ |-- + Parse.!!! ((Scan.option Parse.dots >> is_some) -- + (Scan.repeat1 (Parse.maybe_position Parse.name_position)))) + (false, []) + +val schematic_subgoal_cmd = gen_schematic_subgoal Attrib.attribute_cmd + +val parser = + opt_fact_binding + -- (Scan.option (\<^keyword>\prems\ |-- Parse.!!! opt_fact_binding)) + -- for_params >> (fn ((a, b), c) => + Toplevel.proofs (Seq.make_results o Seq.single o #2 o schematic_subgoal_cmd a b c)) + +in + +(** Outer syntax commands **) + +val _ = Outer_Syntax.command \<^command_keyword>\focus\ + "focus on first subgoal within backward refinement, without instantiating schematic vars" + parser + +val _ = Outer_Syntax.command \<^command_keyword>\\\ "focus bullet" parser +val _ = Outer_Syntax.command \<^command_keyword>\\<^item>\ "focus bullet" parser +val _ = Outer_Syntax.command \<^command_keyword>\\<^enum>\ "focus bullet" parser +val _ = Outer_Syntax.command \<^command_keyword>\~\ "focus bullet" parser + +end diff --git a/spartan/core/goals.ML b/spartan/core/goals.ML new file mode 100644 index 0000000..9f394f0 --- /dev/null +++ b/spartan/core/goals.ML @@ -0,0 +1,214 @@ +(* Title: goals.ML + Author: Makarius Wenzel, Joshua Chen + +Goal statements and proof term export. + +Modified from code originally written by Makarius Wenzel. +*) + +local + +val long_keyword = + Parse_Spec.includes >> K "" || + Parse_Spec.long_statement_keyword + +val long_statement = + Scan.optional + (Parse_Spec.opt_thm_name ":" --| Scan.ahead long_keyword) + Binding.empty_atts -- + Scan.optional Parse_Spec.includes [] -- Parse_Spec.long_statement + >> (fn ((binding, includes), (elems, concl)) => + (true, binding, includes, elems, concl)) + +val short_statement = + Parse_Spec.statement -- Parse_Spec.if_statement -- Parse.for_fixes + >> (fn ((shows, assumes), fixes) => + (false, Binding.empty_atts, [], + [Element.Fixes fixes, Element.Assumes assumes], + Element.Shows shows)) + +fun prep_statement prep_att prep_stmt raw_elems raw_stmt ctxt = + let + val (stmt, elems_ctxt) = prep_stmt raw_elems raw_stmt ctxt + val prems = Assumption.local_prems_of elems_ctxt ctxt + val stmt_ctxt = fold (fold (Proof_Context.augment o fst) o snd) + stmt elems_ctxt + in + case raw_stmt of + Element.Shows _ => + let val stmt' = Attrib.map_specs (map prep_att) stmt + in (([], prems, stmt', NONE), stmt_ctxt) end + | Element.Obtains raw_obtains => + let + val asms_ctxt = stmt_ctxt + |> fold (fn ((name, _), asm) => + snd o Proof_Context.add_assms Assumption.assume_export + [((name, [Context_Rules.intro_query NONE]), asm)]) stmt + val that = Assumption.local_prems_of asms_ctxt stmt_ctxt + val ([(_, that')], that_ctxt) = asms_ctxt + |> Proof_Context.set_stmt true + |> Proof_Context.note_thmss "" + [((Binding.name Auto_Bind.thatN, []), [(that, [])])] + ||> Proof_Context.restore_stmt asms_ctxt + + val stmt' = [ + (Binding.empty_atts, + [(#2 (#1 (Obtain.obtain_thesis ctxt)), [])]) + ] + in + ((Obtain.obtains_attribs raw_obtains, prems, stmt', SOME that'), + that_ctxt) + end + end + +fun define_proof_term name (local_name, [th]) lthy = + let + fun make_name_binding suffix local_name = + let val base_local_name = Long_Name.base_name local_name + in + Binding.qualified_name + ((case base_local_name of + "" => name + | _ => base_local_name) + ^(case suffix of + SOME "prf" => "_prf" + | SOME "def" => "_def" + | _ => "")) + end + + val (prems, concl) = + (Logic.strip_assums_hyp (Thm.prop_of th), + Logic.strip_assums_concl (Thm.prop_of th)) + in + if not (Lib.is_typing concl) then + ([], lthy) + else let + val prems_vars = distinct Term.aconv (flat + (map (Lib.collect_subterms is_Var) prems)) + + val concl_vars = Lib.collect_subterms is_Var + (Lib.term_of_typing concl) + + val params = inter Term.aconv concl_vars prems_vars + + val prf_tm = + fold_rev lambda params (Lib.term_of_typing concl) + + val ((_, (_, raw_def)), lthy') = Local_Theory.define + ((make_name_binding NONE local_name, Mixfix.NoSyn), + ((make_name_binding (SOME "prf") local_name, []), prf_tm)) lthy + + val def = + fold + (fn th1 => fn th2 => Thm.combination th2 th1) + (map (Thm.reflexive o Thm.cterm_of lthy) params) + raw_def + + val ((_, def'), lthy'') = Local_Theory.note + ((make_name_binding (SOME "def") local_name, []), [def]) + lthy' + in + (def', lthy'') + end + end + | define_proof_term _ _ _ = error + ("Unimplemented: handling proof terms of multiple facts in" + ^" single result") + +fun gen_schematic_theorem + bundle_includes prep_att prep_stmt + gen_prf long kind before_qed after_qed (name, raw_atts) + raw_includes raw_elems raw_concl int lthy = + let + val _ = Local_Theory.assert lthy; + + val elems = raw_elems |> map (Element.map_ctxt_attrib (prep_att lthy)) + val ((more_atts, prems, stmt, facts), goal_ctxt) = lthy + |> bundle_includes raw_includes + |> prep_statement (prep_att lthy) prep_stmt elems raw_concl + val atts = more_atts @ map (prep_att lthy) raw_atts + val pos = Position.thread_data () + + val prems_name = if long then Auto_Bind.assmsN else Auto_Bind.thatN + + fun after_qed' results goal_ctxt' = + let + val results' = burrow + (map (Goal.norm_result lthy) o Proof_Context.export goal_ctxt' lthy) + results + + val ((res, lthy'), substmts) = + if forall (Binding.is_empty_atts o fst) stmt + then ((map (pair "") results', lthy), false) + else + (Local_Theory.notes_kind kind + (map2 (fn (b, _) => fn ths => (b, [(ths, [])])) stmt results') + lthy, + true) + + val (res', lthy'') = + if gen_prf + then + let + val (prf_tm_defs, lthy'') = + fold + (fn result => fn (defs, lthy) => + apfst (fn new_defs => defs @ new_defs) + (define_proof_term (Binding.name_of name) result lthy)) + res ([], lthy') + + val res_folded = + map (apsnd (map (Local_Defs.fold lthy'' prf_tm_defs))) res + in + Local_Theory.notes_kind kind + [((name, @{attributes [typechk]} @ atts), + [(maps #2 res_folded, [])])] + lthy'' + end + else + Local_Theory.notes_kind kind + [((name, atts), [(maps #2 res, [])])] + lthy' + + val _ = Proof_Display.print_results int pos lthy'' + ((kind, Binding.name_of name), map (fn (_, ths) => ("", ths)) res') + + val _ = + if substmts then map + (fn (name, ths) => Proof_Display.print_results int pos lthy'' + (("and", name), [("", ths)])) + res + else [] + in + after_qed results' lthy'' + end + in + goal_ctxt + |> not (null prems) ? + (Proof_Context.note_thmss "" [((Binding.name prems_name, []), [(prems, [])])] #> snd) + |> Proof.theorem before_qed after_qed' (map snd stmt) + |> (case facts of NONE => I | SOME ths => Proof.refine_insert ths) + end + +val schematic_theorem_cmd = + gen_schematic_theorem + Bundle.includes_cmd + Attrib.check_src + Expression.read_statement + +fun theorem spec descr = + Outer_Syntax.local_theory_to_proof' spec ("state " ^ descr) + (Scan.option (Args.parens (Args.$$$ "derive")) + -- (long_statement || short_statement) >> + (fn (opt_derive, (long, binding, includes, elems, concl)) => + schematic_theorem_cmd + (case opt_derive of SOME "derive" => true | _ => false) + long descr NONE (K I) binding includes elems concl)) +in + +val _ = theorem \<^command_keyword>\Theorem\ "Theorem" +val _ = theorem \<^command_keyword>\Lemma\ "Lemma" +val _ = theorem \<^command_keyword>\Corollary\ "Corollary" +val _ = theorem \<^command_keyword>\Proposition\ "Proposition" + +end diff --git a/spartan/core/implicits.ML b/spartan/core/implicits.ML new file mode 100644 index 0000000..04fc825 --- /dev/null +++ b/spartan/core/implicits.ML @@ -0,0 +1,78 @@ +structure Implicits : +sig + +val implicit_defs: Proof.context -> (term * term) Symtab.table +val implicit_defs_attr: attribute +val make_holes: Proof.context -> term -> term + +end = struct + +structure Defs = Generic_Data ( + type T = (term * term) Symtab.table + val empty = Symtab.empty + val extend = I + val merge = Symtab.merge (Term.aconv o #1) +) + +val implicit_defs = Defs.get o Context.Proof + +val implicit_defs_attr = Thm.declaration_attribute (fn th => + let + val (t, def) = Lib.dest_eq (Thm.prop_of th) + val (head, args) = Term.strip_comb t + val def' = fold_rev lambda args def + in + Defs.map (Symtab.update (Term.term_name head, (head, def'))) + end) + +fun make_holes ctxt = + let + fun iarg_to_hole (Const (\<^const_name>\iarg\, T)) = + Const (\<^const_name>\hole\, T) + | iarg_to_hole t = t + + fun expand head args = + let + fun betapplys (head', args') = + Term.betapplys (map_aterms iarg_to_hole head', args') + in + case head of + Abs (x, T, t) => + list_comb (Abs (x, T, Lib.traverse_term expand t), args) + | _ => + case Symtab.lookup (implicit_defs ctxt) (Term.term_name head) of + SOME (t, def) => betapplys + (Envir.expand_atom + (Term.fastype_of head) + (Term.fastype_of t, def), + args) + | NONE => list_comb (head, args) + end + + fun holes_to_vars t = + let + val count = Lib.subterm_count (Const (\<^const_name>\hole\, dummyT)) + + fun subst (Const (\<^const_name>\hole\, T)) (Var (idx, _)::_) Ts = + let + val bounds = map Bound (0 upto (length Ts - 1)) + val T' = foldr1 (op -->) (Ts @ [T]) + in + foldl1 (op $) (Var (idx, T')::bounds) + end + | subst (Abs (x, T, t)) vs Ts = Abs (x, T, subst t vs (T::Ts)) + | subst (t $ u) vs Ts = + let val n = count t + in subst t (take n vs) Ts $ subst u (drop n vs) Ts end + | subst t _ _ = t + + val vars = map (fn n => Var ((n, 0), dummyT)) + (Name.invent (Variable.names_of ctxt) "*" (count t)) + in + subst t vars [] + end + in + Lib.traverse_term expand #> holes_to_vars + end + +end diff --git a/spartan/core/lib.ML b/spartan/core/lib.ML new file mode 100644 index 0000000..615f601 --- /dev/null +++ b/spartan/core/lib.ML @@ -0,0 +1,145 @@ +structure Lib : +sig + +(*Lists*) +val max: ('a * 'a -> bool) -> 'a list -> 'a +val maxint: int list -> int + +(*Terms*) +val is_rigid: term -> bool +val dest_eq: term -> term * term +val mk_Var: string -> int -> typ -> term +val lambda_var: term -> term -> term + +val is_typing: term -> bool +val dest_typing: term -> term * term +val term_of_typing: term -> term +val type_of_typing: term -> term +val mk_Pi: term -> term -> term -> term + +val typing_of_term: term -> term + +(*Goals*) +val rigid_typing_concl: term -> bool + +(*Subterms*) +val has_subterm: term list -> term -> bool +val subterm_count: term -> term -> int +val subterm_count_distinct: term list -> term -> int +val traverse_term: (term -> term list -> term) -> term -> term +val collect_subterms: (term -> bool) -> term -> term list + +(*Orderings*) +val subterm_order: term -> term -> order +val cond_order: order -> order -> order + +end = struct + + +(** Lists **) + +fun max gt (x::xs) = fold (fn a => fn b => if gt (a, b) then a else b) xs x + | max _ [] = error "max of empty list" + +val maxint = max (op >) + + +(** Terms **) + +(* Meta *) + +val is_rigid = not o is_Var o head_of + +fun dest_eq (Const (\<^const_name>\Pure.eq\, _) $ t $ def) = (t, def) + | dest_eq _ = error "dest_eq" + +fun mk_Var name idx T = Var ((name, idx), T) + +fun lambda_var x tm = + let + fun var_args (Var (idx, T)) = Var (idx, \<^typ>\o\ --> T) $ x + | var_args t = t + in + tm |> map_aterms var_args + |> lambda x + end + +(* Object *) + +fun is_typing (Const (\<^const_name>\has_type\, _) $ _ $ _) = true + | is_typing _ = false + +fun dest_typing (Const (\<^const_name>\has_type\, _) $ t $ T) = (t, T) + | dest_typing _ = error "dest_typing" + +val term_of_typing = #1 o dest_typing +val type_of_typing = #2 o dest_typing + +fun mk_Pi v typ body = Const (\<^const_name>\Pi\, dummyT) $ typ $ lambda v body + +fun typing_of_term tm = \<^const>\has_type\ $ tm $ Var (("*?", 0), \<^typ>\o\) +(*The above is a bit hacky; basically we need to guarantee that the schematic + var is fresh*) + + +(** Goals **) + +fun rigid_typing_concl goal = + let val concl = Logic.strip_assums_concl goal + in is_typing concl andalso is_rigid (term_of_typing concl) end + + +(** Subterms **) + +fun has_subterm tms = + Term.exists_subterm + (foldl1 (op orf) (map (fn t => fn s => Term.aconv_untyped (s, t)) tms)) + +fun subterm_count s t = + let + fun count (t1 $ t2) i = i + count t1 0 + count t2 0 + | count (Abs (_, _, t)) i = i + count t 0 + | count t i = if Term.aconv_untyped (s, t) then i + 1 else i + in + count t 0 + end + +(*Number of distinct subterms in `tms` that appear in `tm`*) +fun subterm_count_distinct tms tm = + length (filter I (map (fn t => has_subterm [t] tm) tms)) + +(* + "Folds" a function f over the term structure of t by traversing t from child + nodes upwards through parents. At each node n in the term syntax tree, f is + additionally passed a list of the results of f at all children of n. +*) +fun traverse_term f t = + let + fun map_aux (Abs (x, T, t)) = Abs (x, T, map_aux t) + | map_aux t = + let + val (head, args) = Term.strip_comb t + val args' = map map_aux args + in + f head args' + end + in + map_aux t + end + +fun collect_subterms f (t $ u) = collect_subterms f t @ collect_subterms f u + | collect_subterms f (Abs (_, _, t)) = collect_subterms f t + | collect_subterms f t = if f t then [t] else [] + + +(** Orderings **) + +fun subterm_order t1 t2 = + if has_subterm [t1] t2 then LESS + else if has_subterm [t2] t1 then GREATER + else EQUAL + +fun cond_order o1 o2 = case o1 of EQUAL => o2 | _ => o1 + + +end diff --git a/spartan/core/rewrite.ML b/spartan/core/rewrite.ML new file mode 100644 index 0000000..f9c5d8e --- /dev/null +++ b/spartan/core/rewrite.ML @@ -0,0 +1,465 @@ +(* Title: rewrite.ML + Author: Christoph Traut, Lars Noschinski, TU Muenchen + Modified: Joshua Chen, University of Innsbruck + +This is a rewrite method that supports subterm-selection based on patterns. + +The patterns accepted by rewrite are of the following form: + ::= | "concl" | "asm" | "for" "(" ")" + ::= (in | at ) [] + ::= [] ("to" ) + +This syntax was clearly inspired by Gonthier's and Tassi's language of +patterns but has diverged significantly during its development. + +We also allow introduction of identifiers for bound variables, +which can then be used to match arbitrary subterms inside abstractions. + +This code is slightly modified from the original at HOL/Library/rewrite.ML, +to incorporate auto-typechecking for type theory. +*) + +infix 1 then_pconv; +infix 0 else_pconv; + +signature REWRITE = +sig + type patconv = Proof.context -> Type.tyenv * (string * term) list -> cconv + val then_pconv: patconv * patconv -> patconv + val else_pconv: patconv * patconv -> patconv + val abs_pconv: patconv -> string option * typ -> patconv (*XXX*) + val fun_pconv: patconv -> patconv + val arg_pconv: patconv -> patconv + val imp_pconv: patconv -> patconv + val params_pconv: patconv -> patconv + val forall_pconv: patconv -> string option * typ option -> patconv + val all_pconv: patconv + val for_pconv: patconv -> (string option * typ option) list -> patconv + val concl_pconv: patconv -> patconv + val asm_pconv: patconv -> patconv + val asms_pconv: patconv -> patconv + val judgment_pconv: patconv -> patconv + val in_pconv: patconv -> patconv + val match_pconv: patconv -> term * (string option * typ) list -> patconv + val rewrs_pconv: term option -> thm list -> patconv + + datatype ('a, 'b) pattern = At | In | Term of 'a | Concl | Asm | For of 'b list + + val mk_hole: int -> typ -> term + + val rewrite_conv: Proof.context + -> (term * (string * typ) list, string * typ option) pattern list * term option + -> thm list + -> conv +end + +structure Rewrite : REWRITE = +struct + +datatype ('a, 'b) pattern = At | In | Term of 'a | Concl | Asm | For of 'b list + +exception NO_TO_MATCH + +val holeN = Name.internal "_hole" + +fun prep_meta_eq ctxt = Simplifier.mksimps ctxt #> map Drule.zero_var_indexes + + +(* holes *) + +fun mk_hole i T = Var ((holeN, i), T) + +fun is_hole (Var ((name, _), _)) = (name = holeN) + | is_hole _ = false + +fun is_hole_const (Const (\<^const_name>\rewrite_HOLE\, _)) = true + | is_hole_const _ = false + +val hole_syntax = + let + (* Modified variant of Term.replace_hole *) + fun replace_hole Ts (Const (\<^const_name>\rewrite_HOLE\, T)) i = + (list_comb (mk_hole i (Ts ---> T), map_range Bound (length Ts)), i + 1) + | replace_hole Ts (Abs (x, T, t)) i = + let val (t', i') = replace_hole (T :: Ts) t i + in (Abs (x, T, t'), i') end + | replace_hole Ts (t $ u) i = + let + val (t', i') = replace_hole Ts t i + val (u', i'') = replace_hole Ts u i' + in (t' $ u', i'') end + | replace_hole _ a i = (a, i) + fun prep_holes ts = #1 (fold_map (replace_hole []) ts 1) + in + Context.proof_map (Syntax_Phases.term_check 101 "hole_expansion" (K prep_holes)) + #> Proof_Context.set_mode Proof_Context.mode_pattern + end + + +(* pattern conversions *) + +type patconv = Proof.context -> Type.tyenv * (string * term) list -> cterm -> thm + +fun (cv1 then_pconv cv2) ctxt tytenv ct = (cv1 ctxt tytenv then_conv cv2 ctxt tytenv) ct + +fun (cv1 else_pconv cv2) ctxt tytenv ct = (cv1 ctxt tytenv else_conv cv2 ctxt tytenv) ct + +fun raw_abs_pconv cv ctxt tytenv ct = + case Thm.term_of ct of + Abs _ => CConv.abs_cconv (fn (x, ctxt') => cv x ctxt' tytenv) ctxt ct + | t => raise TERM ("raw_abs_pconv", [t]) + +fun raw_fun_pconv cv ctxt tytenv ct = + case Thm.term_of ct of + _ $ _ => CConv.fun_cconv (cv ctxt tytenv) ct + | t => raise TERM ("raw_fun_pconv", [t]) + +fun raw_arg_pconv cv ctxt tytenv ct = + case Thm.term_of ct of + _ $ _ => CConv.arg_cconv (cv ctxt tytenv) ct + | t => raise TERM ("raw_arg_pconv", [t]) + +fun abs_pconv cv (s,T) ctxt (tyenv, ts) ct = + let val u = Thm.term_of ct + in + case try (fastype_of #> dest_funT) u of + NONE => raise TERM ("abs_pconv: no function type", [u]) + | SOME (U, _) => + let + val tyenv' = + if T = dummyT then tyenv + else Sign.typ_match (Proof_Context.theory_of ctxt) (T, U) tyenv + val eta_expand_cconv = + case u of + Abs _=> Thm.reflexive + | _ => CConv.rewr_cconv @{thm eta_expand} + fun add_ident NONE _ l = l + | add_ident (SOME name) ct l = (name, Thm.term_of ct) :: l + val abs_cv = CConv.abs_cconv (fn (ct, ctxt) => cv ctxt (tyenv', add_ident s ct ts)) ctxt + in (eta_expand_cconv then_conv abs_cv) ct end + handle Pattern.MATCH => raise TYPE ("abs_pconv: types don't match", [T,U], [u]) + end + +fun fun_pconv cv ctxt tytenv ct = + case Thm.term_of ct of + _ $ _ => CConv.fun_cconv (cv ctxt tytenv) ct + | Abs (_, T, _ $ Bound 0) => abs_pconv (fun_pconv cv) (NONE, T) ctxt tytenv ct + | t => raise TERM ("fun_pconv", [t]) + +local + +fun arg_pconv_gen cv0 cv ctxt tytenv ct = + case Thm.term_of ct of + _ $ _ => cv0 (cv ctxt tytenv) ct + | Abs (_, T, _ $ Bound 0) => abs_pconv (arg_pconv_gen cv0 cv) (NONE, T) ctxt tytenv ct + | t => raise TERM ("arg_pconv_gen", [t]) + +in + +fun arg_pconv ctxt = arg_pconv_gen CConv.arg_cconv ctxt +fun imp_pconv ctxt = arg_pconv_gen (CConv.concl_cconv 1) ctxt + +end + +(* Move to B in !!x_1 ... x_n. B. Do not eta-expand *) +fun params_pconv cv ctxt tytenv ct = + let val pconv = + case Thm.term_of ct of + Const (\<^const_name>\Pure.all\, _) $ Abs _ => (raw_arg_pconv o raw_abs_pconv) (fn _ => params_pconv cv) + | Const (\<^const_name>\Pure.all\, _) => raw_arg_pconv (params_pconv cv) + | _ => cv + in pconv ctxt tytenv ct end + +fun forall_pconv cv ident ctxt tytenv ct = + case Thm.term_of ct of + Const (\<^const_name>\Pure.all\, T) $ _ => + let + val def_U = T |> dest_funT |> fst |> dest_funT |> fst + val ident' = apsnd (the_default (def_U)) ident + in arg_pconv (abs_pconv cv ident') ctxt tytenv ct end + | t => raise TERM ("forall_pconv", [t]) + +fun all_pconv _ _ = Thm.reflexive + +fun for_pconv cv idents ctxt tytenv ct = + let + fun f rev_idents (Const (\<^const_name>\Pure.all\, _) $ t) = + let val (rev_idents', cv') = f rev_idents (case t of Abs (_,_,u) => u | _ => t) + in + case rev_idents' of + [] => ([], forall_pconv cv' (NONE, NONE)) + | (x :: xs) => (xs, forall_pconv cv' x) + end + | f rev_idents _ = (rev_idents, cv) + in + case f (rev idents) (Thm.term_of ct) of + ([], cv') => cv' ctxt tytenv ct + | _ => raise CTERM ("for_pconv", [ct]) + end + +fun concl_pconv cv ctxt tytenv ct = + case Thm.term_of ct of + (Const (\<^const_name>\Pure.imp\, _) $ _) $ _ => imp_pconv (concl_pconv cv) ctxt tytenv ct + | _ => cv ctxt tytenv ct + +fun asm_pconv cv ctxt tytenv ct = + case Thm.term_of ct of + (Const (\<^const_name>\Pure.imp\, _) $ _) $ _ => CConv.with_prems_cconv ~1 (cv ctxt tytenv) ct + | t => raise TERM ("asm_pconv", [t]) + +fun asms_pconv cv ctxt tytenv ct = + case Thm.term_of ct of + (Const (\<^const_name>\Pure.imp\, _) $ _) $ _ => + ((CConv.with_prems_cconv ~1 oo cv) else_pconv imp_pconv (asms_pconv cv)) ctxt tytenv ct + | t => raise TERM ("asms_pconv", [t]) + +fun judgment_pconv cv ctxt tytenv ct = + if Object_Logic.is_judgment ctxt (Thm.term_of ct) + then arg_pconv cv ctxt tytenv ct + else cv ctxt tytenv ct + +fun in_pconv cv ctxt tytenv ct = + (cv else_pconv + raw_fun_pconv (in_pconv cv) else_pconv + raw_arg_pconv (in_pconv cv) else_pconv + raw_abs_pconv (fn _ => in_pconv cv)) + ctxt tytenv ct + +fun replace_idents idents t = + let + fun subst ((n1, s)::ss) (t as Free (n2, _)) = if n1 = n2 then s else subst ss t + | subst _ t = t + in Term.map_aterms (subst idents) t end + +fun match_pconv cv (t,fixes) ctxt (tyenv, env_ts) ct = + let + val t' = replace_idents env_ts t + val thy = Proof_Context.theory_of ctxt + val u = Thm.term_of ct + + fun descend_hole fixes (Abs (_, _, t)) = + (case descend_hole fixes t of + NONE => NONE + | SOME (fix :: fixes', pos) => SOME (fixes', abs_pconv pos fix) + | SOME ([], _) => raise Match (* less fixes than abstractions on path to hole *)) + | descend_hole fixes (t as l $ r) = + let val (f, _) = strip_comb t + in + if is_hole f + then SOME (fixes, cv) + else + (case descend_hole fixes l of + SOME (fixes', pos) => SOME (fixes', fun_pconv pos) + | NONE => + (case descend_hole fixes r of + SOME (fixes', pos) => SOME (fixes', arg_pconv pos) + | NONE => NONE)) + end + | descend_hole fixes t = + if is_hole t then SOME (fixes, cv) else NONE + + val to_hole = descend_hole (rev fixes) #> the_default ([], cv) #> snd + in + case try (Pattern.match thy (apply2 Logic.mk_term (t',u))) (tyenv, Vartab.empty) of + NONE => raise TERM ("match_pconv: Does not match pattern", [t, t',u]) + | SOME (tyenv', _) => to_hole t ctxt (tyenv', env_ts) ct + end + +fun rewrs_pconv to thms ctxt (tyenv, env_ts) = + let + fun instantiate_normalize_env ctxt env thm = + let + val prop = Thm.prop_of thm + val norm_type = Envir.norm_type o Envir.type_env + val insts = Term.add_vars prop [] + |> map (fn x as (s, T) => + ((s, norm_type env T), Thm.cterm_of ctxt (Envir.norm_term env (Var x)))) + val tyinsts = Term.add_tvars prop [] + |> map (fn x => (x, Thm.ctyp_of ctxt (norm_type env (TVar x)))) + in Drule.instantiate_normalize (tyinsts, insts) thm end + + fun unify_with_rhs context to env thm = + let + val (_, rhs) = thm |> Thm.concl_of |> Logic.dest_equals + val env' = Pattern.unify context (Logic.mk_term to, Logic.mk_term rhs) env + handle Pattern.Unif => raise NO_TO_MATCH + in env' end + + fun inst_thm_to _ (NONE, _) thm = thm + | inst_thm_to (ctxt : Proof.context) (SOME to, env) thm = + instantiate_normalize_env ctxt (unify_with_rhs (Context.Proof ctxt) to env thm) thm + + fun inst_thm ctxt idents (to, tyenv) thm = + let + (* Replace any identifiers with their corresponding bound variables. *) + val maxidx = Term.maxidx_typs (map (snd o snd) (Vartab.dest tyenv)) 0 + val env = Envir.Envir {maxidx = maxidx, tenv = Vartab.empty, tyenv = tyenv} + val maxidx = Envir.maxidx_of env |> fold Term.maxidx_term (the_list to) + val thm' = Thm.incr_indexes (maxidx + 1) thm + in SOME (inst_thm_to ctxt (Option.map (replace_idents idents) to, env) thm') end + handle NO_TO_MATCH => NONE + + in CConv.rewrs_cconv (map_filter (inst_thm ctxt env_ts (to, tyenv)) thms) end + +fun rewrite_conv ctxt (pattern, to) thms ct = + let + fun apply_pat At = judgment_pconv + | apply_pat In = in_pconv + | apply_pat Asm = params_pconv o asms_pconv + | apply_pat Concl = params_pconv o concl_pconv + | apply_pat (For idents) = (fn cv => for_pconv cv (map (apfst SOME) idents)) + | apply_pat (Term x) = (fn cv => match_pconv cv (apsnd (map (apfst SOME)) x)) + + val cv = fold_rev apply_pat pattern + + fun distinct_prems th = + case Seq.pull (distinct_subgoals_tac th) of + NONE => th + | SOME (th', _) => th' + + val rewrite = rewrs_pconv to (maps (prep_meta_eq ctxt) thms) + in cv rewrite ctxt (Vartab.empty, []) ct |> distinct_prems end + +fun rewrite_export_tac ctxt (pat, pat_ctxt) thms = + let + val export = case pat_ctxt of + NONE => I + | SOME inner => singleton (Proof_Context.export inner ctxt) + in CCONVERSION (export o rewrite_conv ctxt pat thms) end + +val _ = + Theory.setup + let + fun mk_fix s = (Binding.name s, NONE, NoSyn) + + val raw_pattern : (string, binding * string option * mixfix) pattern list parser = + let + val sep = (Args.$$$ "at" >> K At) || (Args.$$$ "in" >> K In) + val atom = (Args.$$$ "asm" >> K Asm) || + (Args.$$$ "concl" >> K Concl) || + (Args.$$$ "for" |-- Args.parens (Scan.optional Parse.vars []) >> For) || + (Parse.term >> Term) + val sep_atom = sep -- atom >> (fn (s,a) => [s,a]) + + fun append_default [] = [Concl, In] + | append_default (ps as Term _ :: _) = Concl :: In :: ps + | append_default [For x, In] = [For x, Concl, In] + | append_default (For x :: (ps as In :: Term _:: _)) = For x :: Concl :: ps + | append_default ps = ps + + in Scan.repeats sep_atom >> (rev #> append_default) end + + fun context_lift (scan : 'a parser) f = fn (context : Context.generic, toks) => + let + val (r, toks') = scan toks + val (r', context') = Context.map_proof_result (fn ctxt => f ctxt r) context + in (r', (context', toks' : Token.T list)) end + + fun read_fixes fixes ctxt = + let fun read_typ (b, rawT, mx) = (b, Option.map (Syntax.read_typ ctxt) rawT, mx) + in Proof_Context.add_fixes (map read_typ fixes) ctxt end + + fun prep_pats ctxt (ps : (string, binding * string option * mixfix) pattern list) = + let + fun add_constrs ctxt n (Abs (x, T, t)) = + let + val (x', ctxt') = yield_singleton Proof_Context.add_fixes (mk_fix x) ctxt + in + (case add_constrs ctxt' (n+1) t of + NONE => NONE + | SOME ((ctxt'', n', xs), t') => + let + val U = Type_Infer.mk_param n [] + val u = Type.constraint (U --> dummyT) (Abs (x, T, t')) + in SOME ((ctxt'', n', (x', U) :: xs), u) end) + end + | add_constrs ctxt n (l $ r) = + (case add_constrs ctxt n l of + SOME (c, l') => SOME (c, l' $ r) + | NONE => + (case add_constrs ctxt n r of + SOME (c, r') => SOME (c, l $ r') + | NONE => NONE)) + | add_constrs ctxt n t = + if is_hole_const t then SOME ((ctxt, n, []), t) else NONE + + fun prep (Term s) (n, ctxt) = + let + val t = Syntax.parse_term ctxt s + val ((ctxt', n', bs), t') = + the_default ((ctxt, n, []), t) (add_constrs ctxt (n+1) t) + in (Term (t', bs), (n', ctxt')) end + | prep (For ss) (n, ctxt) = + let val (ns, ctxt') = read_fixes ss ctxt + in (For ns, (n, ctxt')) end + | prep At (n,ctxt) = (At, (n, ctxt)) + | prep In (n,ctxt) = (In, (n, ctxt)) + | prep Concl (n,ctxt) = (Concl, (n, ctxt)) + | prep Asm (n,ctxt) = (Asm, (n, ctxt)) + + val (xs, (_, ctxt')) = fold_map prep ps (0, ctxt) + + in (xs, ctxt') end + + fun prep_args ctxt (((raw_pats, raw_to), raw_ths)) = + let + + fun check_terms ctxt ps to = + let + fun safe_chop (0: int) xs = ([], xs) + | safe_chop n (x :: xs) = chop (n - 1) xs |>> cons x + | safe_chop _ _ = raise Match + + fun reinsert_pat _ (Term (_, cs)) (t :: ts) = + let val (cs', ts') = safe_chop (length cs) ts + in (Term (t, map dest_Free cs'), ts') end + | reinsert_pat _ (Term _) [] = raise Match + | reinsert_pat ctxt (For ss) ts = + let val fixes = map (fn s => (s, Variable.default_type ctxt s)) ss + in (For fixes, ts) end + | reinsert_pat _ At ts = (At, ts) + | reinsert_pat _ In ts = (In, ts) + | reinsert_pat _ Concl ts = (Concl, ts) + | reinsert_pat _ Asm ts = (Asm, ts) + + fun free_constr (s,T) = Type.constraint T (Free (s, dummyT)) + fun mk_free_constrs (Term (t, cs)) = t :: map free_constr cs + | mk_free_constrs _ = [] + + val ts = maps mk_free_constrs ps @ the_list to + |> Syntax.check_terms (hole_syntax ctxt) + val ctxt' = fold Variable.declare_term ts ctxt + val (ps', (to', ts')) = fold_map (reinsert_pat ctxt') ps ts + ||> (fn xs => case to of NONE => (NONE, xs) | SOME _ => (SOME (hd xs), tl xs)) + val _ = case ts' of (_ :: _) => raise Match | [] => () + in ((ps', to'), ctxt') end + + val (pats, ctxt') = prep_pats ctxt raw_pats + + val ths = Attrib.eval_thms ctxt' raw_ths + val to = Option.map (Syntax.parse_term ctxt') raw_to + + val ((pats', to'), ctxt'') = check_terms ctxt' pats to + + in ((pats', ths, (to', ctxt)), ctxt'') end + + val to_parser = Scan.option ((Args.$$$ "to") |-- Parse.term) + + val subst_parser = + let val scan = raw_pattern -- to_parser -- Parse.thms1 + in context_lift scan prep_args end + in + Method.setup \<^binding>\rewr\ (subst_parser >> + (fn (pattern, inthms, (to, pat_ctxt)) => fn orig_ctxt => + SIMPLE_METHOD' + (rewrite_export_tac orig_ctxt ((pattern, to), SOME pat_ctxt) inthms))) + "single-step rewriting, allowing subterm selection via patterns" + #> + (Method.setup \<^binding>\rewrite\ (subst_parser >> + (fn (pattern, inthms, (to, pat_ctxt)) => fn orig_ctxt => + SIMPLE_METHOD' (SIDE_CONDS + (rewrite_export_tac orig_ctxt ((pattern, to), SOME pat_ctxt) inthms) + orig_ctxt))) + "single-step rewriting with auto-typechecking") + end +end diff --git a/spartan/core/tactics.ML b/spartan/core/tactics.ML new file mode 100644 index 0000000..f23bfee --- /dev/null +++ b/spartan/core/tactics.ML @@ -0,0 +1,233 @@ +(* Title: tactics.ML + Author: Joshua Chen + +General tactics for dependent type theory. +*) + +structure Tactics(* : +sig + +val assumptions_tac: Proof.context -> int -> tactic +val known_tac: Proof.context -> int -> tactic +val typechk_tac: Proof.context -> int -> tactic +val auto_typechk: bool Config.T +val SIDE_CONDS: (int -> tactic) -> Proof.context -> int -> tactic +val rule_tac: thm list -> Proof.context -> int -> tactic +val dest_tac: int option -> thm list -> Proof.context -> int -> tactic +val intro_tac: Proof.context -> int -> tactic +val intros_tac: Proof.context -> int -> tactic +val old_elims_tac: term option -> Proof.context -> int -> tactic + +end *) = struct + +(*An assumption tactic that only solves typing goals with rigid terms and + judgmental equalities without schematic variables*) +fun assumptions_tac ctxt = SUBGOAL (fn (goal, i) => + let + val concl = Logic.strip_assums_concl goal + in + if + Lib.is_typing concl andalso Lib.is_rigid (Lib.term_of_typing concl) + orelse not ((exists_subterm is_Var) concl) + then assume_tac ctxt i + else no_tac + end) + +(*Solves typing goals with rigid term by resolving with context facts and + simplifier premises, or arbitrary goals by *non-unifying* assumption*) +fun known_tac ctxt = SUBGOAL (fn (goal, i) => + let + val concl = Logic.strip_assums_concl goal + in + ((if Lib.is_typing concl andalso Lib.is_rigid (Lib.term_of_typing concl) + then + let val ths = map fst (Facts.props (Proof_Context.facts_of ctxt)) + in resolve_tac ctxt (ths @ Simplifier.prems_of ctxt) end + else K no_tac) + ORELSE' assumptions_tac ctxt) i + end) + +(*Typechecking: try to solve goals of the form "a: A" where a is rigid*) +fun typechk_tac ctxt = + let + val tac = SUBGOAL (fn (goal, i) => + if Lib.rigid_typing_concl goal + then + let val net = Tactic.build_net + ((Named_Theorems.get ctxt \<^named_theorems>\typechk\) + @(Named_Theorems.get ctxt \<^named_theorems>\intros\) + @(map #1 (Elim.rules ctxt))) + in (resolve_from_net_tac ctxt net) i end + else no_tac) + in + REPEAT_ALL_NEW (known_tac ctxt ORELSE' tac) + end + +(*Many methods try to automatically discharge side conditions by typechecking. + Switch this flag off to discharge by non-unifying assumption instead.*) +val auto_typechk = Attrib.setup_config_bool \<^binding>\auto_typechk\ (K true) + +fun side_cond_tac ctxt = CHANGED o REPEAT o + (if Config.get ctxt auto_typechk then typechk_tac ctxt else known_tac ctxt) + +(*Combinator runs tactic and tries to discharge all new typing side conditions*) +fun SIDE_CONDS tac ctxt = tac THEN_ALL_NEW (TRY o side_cond_tac ctxt) + +local +fun mk_rules _ ths [] = ths + | mk_rules n ths ths' = + let val ths'' = foldr1 (op @) + (map (fn th => [rotate_prems n (th RS @{thm PiE})] handle THM _ => []) ths') + in + mk_rules n (ths @ ths') ths'' + end +in + +(*Resolves with given rules, discharging as many side conditions as possible*) +fun rule_tac ths ctxt = resolve_tac ctxt (mk_rules 0 [] ths) + +(*Attempts destruct-resolution with the n-th premise of the given rules*) +fun dest_tac opt_n ths ctxt = dresolve_tac ctxt + (mk_rules (case opt_n of NONE => 0 | SOME 0 => 0 | SOME n => n-1) [] ths) + +end + +(*Applies some introduction rule*) +fun intro_tac ctxt = SUBGOAL (fn (_, i) => SIDE_CONDS + (resolve_tac ctxt (Named_Theorems.get ctxt \<^named_theorems>\intros\)) ctxt i) + +fun intros_tac ctxt = SUBGOAL (fn (_, i) => + (CHANGED o REPEAT o CHANGED o intro_tac ctxt) i) + +(*Basic elimination tactic, only uses existing type judgments from the context + (performs no type synthesis)*) +fun old_elims_tac opt_tm ctxt = case opt_tm of + NONE => SUBGOAL (fn (_, i) => eresolve_tac ctxt (map #1 (Elim.rules ctxt)) i) + | SOME tm => SUBGOAL (fn (goal, i) => + let + fun elim_rule typing = + let + val hd = head_of (Lib.type_of_typing typing) + val opt_rl = Elim.lookup_rule ctxt hd + in + case opt_rl of + NONE => Drule.dummy_thm + | SOME (rl, _) => Drule.infer_instantiate' ctxt + [SOME (Thm.cterm_of ctxt tm)] rl + end + + val template = Lib.typing_of_term tm + + val facts = Proof_Context.facts_of ctxt + val candidate_typings = Facts.could_unify facts template + val candidate_rules = + map (elim_rule o Thm.prop_of o #1) candidate_typings + + val prems = Logic.strip_assums_hyp goal + val candidate_typings' = + filter (fn prem => Term.could_unify (template, prem)) prems + val candidate_rules' = map elim_rule candidate_typings' + in + (resolve_tac ctxt candidate_rules + ORELSE' eresolve_tac ctxt candidate_rules') i + end) + +(* Revamped general induction/elimination *) + +(*Pushes a context/goal premise typing t:T into a \-type*) +fun internalize_fact_tac t = + Subgoal.FOCUS_PARAMS (fn {context = ctxt, concl = raw_concl, ...} => + let + val concl = Logic.strip_assums_concl (Thm.term_of raw_concl) + val C = Lib.type_of_typing concl + val B = Thm.cterm_of ctxt (Lib.lambda_var t C) + val a = Thm.cterm_of ctxt t + (*The resolvent is PiE[where ?B=B and ?a=a]*) + val resolvent = + Drule.infer_instantiate' ctxt [NONE, NONE, SOME B, SOME a] @{thm PiE} + in + HEADGOAL (resolve_tac ctxt [resolvent]) + (*known_tac infers the correct type T inferred by unification*) + THEN SOMEGOAL (known_tac ctxt) + end) + +(*Premises that have already been pushed into the \-type*) +structure Inserts = Proof_Data ( + type T = term Item_Net.T + val init = K (Item_Net.init Term.aconv_untyped single) +) + +local + +fun elim_core_tac tms types ctxt = SUBGOAL (K ( + let + val rule_insts = map ((Elim.lookup_rule ctxt) o Term.head_of) types + val rules = flat (map + (fn rule_inst => case rule_inst of + NONE => [] + | SOME (rl, idxnames) => [Drule.infer_instantiate ctxt + (idxnames ~~ map (Thm.cterm_of ctxt) tms) rl]) + rule_insts) + in + HEADGOAL (resolve_tac ctxt rules) + THEN RANGE (replicate (length tms) (typechk_tac ctxt)) 1 + end handle Option => no_tac)) + +in + +fun elim_context_tac tms ctxt = case tms of + [] => CONTEXT_SUBGOAL (K (Context_Tactic.CONTEXT_TACTIC (HEADGOAL ( + SIDE_CONDS (eresolve_tac ctxt (map #1 (Elim.rules ctxt))) ctxt)))) + | major::_ => CONTEXT_SUBGOAL (fn (goal, _) => + let + val facts = Proof_Context.facts_of ctxt + val prems = Logic.strip_assums_hyp goal + val template = Lib.typing_of_term major + val types = + map (Thm.prop_of o #1) (Facts.could_unify facts template) + @ filter (fn prem => Term.could_unify (template, prem)) prems + |> map Lib.type_of_typing + in case types of + [] => Context_Tactic.CONTEXT_TACTIC no_tac + | _ => + let + val inserts = map (Thm.prop_of o fst) (Facts.props facts) @ prems + |> filter Lib.is_typing + |> map Lib.dest_typing + |> filter_out (fn (t, _) => + Term.aconv (t, major) orelse Item_Net.member (Inserts.get ctxt) t) + |> map (fn (t, T) => ((t, T), Lib.subterm_count_distinct tms T)) + |> filter (fn (_, i) => i > 0) + (*`t1: T1` comes before `t2: T2` if T1 contains t2 as subterm. + If they are incomparable, then order by decreasing + `subterm_count [p, x, y] T`*) + |> sort (fn (((t1, _), i), ((_, T2), j)) => + Lib.cond_order (Lib.subterm_order T2 t1) (int_ord (j, i))) + |> map (#1 o #1) + val record_inserts = Inserts.map (fold Item_Net.update inserts) + val tac = + (*Push premises having a subterm in `tms` into a \*) + fold (fn t => fn tac => + tac THEN HEADGOAL (internalize_fact_tac t ctxt)) + inserts all_tac + (*Apply elimination rule*) + THEN (HEADGOAL ( + elim_core_tac tms types ctxt + (*Pull pushed premises back out*) + THEN_ALL_NEW (SUBGOAL (fn (_, i) => + REPEAT_DETERM_N (length inserts) + (resolve_tac ctxt @{thms PiI} i))) + )) + (*Side conditions*) + THEN ALLGOALS (TRY o side_cond_tac ctxt) + in + fn (ctxt, st) => Context_Tactic.TACTIC_CONTEXT + (record_inserts ctxt) (tac st) + end + end) + +end + +end + +open Tactics diff --git a/spartan/data/List.thy b/spartan/data/List.thy new file mode 100644 index 0000000..71a879b --- /dev/null +++ b/spartan/data/List.thy @@ -0,0 +1,6 @@ +theory List +imports Spartan + +begin + +end diff --git a/spartan/lib/congruence.ML b/spartan/lib/congruence.ML deleted file mode 100644 index bb7348c..0000000 --- a/spartan/lib/congruence.ML +++ /dev/null @@ -1,16 +0,0 @@ -signature Sym_Attr_Data = -sig - val name: string - val symmetry_rule: thm -end - -functor Sym_Attr (D: Sym_Attr_Data) = -struct - local - val distinct_prems = the_single o Seq.list_of o Tactic.distinct_subgoals_tac - in - val attr = Thm.rule_attribute [] - (K (fn th => distinct_prems (th RS D.symmetry_rule) handle THM _ => th)) - val setup = Attrib.setup (Binding.name D.name) (Scan.succeed attr) "" - end -end diff --git a/spartan/lib/elimination.ML b/spartan/lib/elimination.ML deleted file mode 100644 index 617f83e..0000000 --- a/spartan/lib/elimination.ML +++ /dev/null @@ -1,46 +0,0 @@ -(* Title: elimination.ML - Author: Joshua Chen - -Type elimination setup. -*) - -structure Elim: sig - -val rules: Proof.context -> (thm * indexname list) list -val lookup_rule: Proof.context -> Termtab.key -> (thm * indexname list) option -val register_rule: term list -> thm -> Context.generic -> Context.generic - -end = struct - -(** Context data **) - -(* Elimination rule data *) - -(*Stores elimination rules together with a list of the indexnames of the - variables each rule eliminates. Keyed by head of the type being eliminated.*) -structure Rules = Generic_Data ( - type T = (thm * indexname list) Termtab.table - val empty = Termtab.empty - val extend = I - val merge = Termtab.merge (eq_fst Thm.eq_thm_prop) -) - -fun rules ctxt = map (op #2) (Termtab.dest (Rules.get (Context.Proof ctxt))) -fun lookup_rule ctxt = Termtab.lookup (Rules.get (Context.Proof ctxt)) -fun register_rule tms rl = - let val hd = Term.head_of (Lib.type_of_typing (Thm.major_prem_of rl)) - in Rules.map (Termtab.update (hd, (rl, map (#1 o dest_Var) tms))) end - - -(* [elims] attribute *) -val _ = Theory.setup ( - Attrib.setup \<^binding>\elims\ - (Scan.repeat Args.term_pattern >> - (Thm.declaration_attribute o register_rule)) - "" - #> Global_Theory.add_thms_dynamic (\<^binding>\elims\, - fn context => (map #1 (rules (Context.proof_of context)))) -) - - -end diff --git a/spartan/lib/eqsubst.ML b/spartan/lib/eqsubst.ML deleted file mode 100644 index ea6f098..0000000 --- a/spartan/lib/eqsubst.ML +++ /dev/null @@ -1,434 +0,0 @@ -(* Title: eqsubst.ML - Author: Lucas Dixon, University of Edinburgh - Modified: Joshua Chen, University of Innsbruck - -Perform a substitution using an equation. - -This code is slightly modified from the original at Tools/eqsubst..ML, -to incorporate auto-typechecking for type theory. -*) - -signature EQSUBST = -sig - type match = - ((indexname * (sort * typ)) list (* type instantiations *) - * (indexname * (typ * term)) list) (* term instantiations *) - * (string * typ) list (* fake named type abs env *) - * (string * typ) list (* type abs env *) - * term (* outer term *) - - type searchinfo = - Proof.context - * int (* maxidx *) - * Zipper.T (* focusterm to search under *) - - datatype 'a skipseq = SkipMore of int | SkipSeq of 'a Seq.seq Seq.seq - - val skip_first_asm_occs_search: ('a -> 'b -> 'c Seq.seq Seq.seq) -> 'a -> int -> 'b -> 'c skipseq - val skip_first_occs_search: int -> ('a -> 'b -> 'c Seq.seq Seq.seq) -> 'a -> 'b -> 'c Seq.seq - val skipto_skipseq: int -> 'a Seq.seq Seq.seq -> 'a skipseq - - (* tactics *) - val eqsubst_asm_tac: Proof.context -> int list -> thm list -> int -> tactic - val eqsubst_asm_tac': Proof.context -> - (searchinfo -> int -> term -> match skipseq) -> int -> thm -> int -> tactic - val eqsubst_tac: Proof.context -> - int list -> (* list of occurrences to rewrite, use [0] for any *) - thm list -> int -> tactic - val eqsubst_tac': Proof.context -> - (searchinfo -> term -> match Seq.seq) (* search function *) - -> thm (* equation theorem to rewrite with *) - -> int (* subgoal number in goal theorem *) - -> thm (* goal theorem *) - -> thm Seq.seq (* rewritten goal theorem *) - - (* search for substitutions *) - val valid_match_start: Zipper.T -> bool - val search_lr_all: Zipper.T -> Zipper.T Seq.seq - val search_lr_valid: (Zipper.T -> bool) -> Zipper.T -> Zipper.T Seq.seq - val searchf_lr_unify_all: searchinfo -> term -> match Seq.seq Seq.seq - val searchf_lr_unify_valid: searchinfo -> term -> match Seq.seq Seq.seq - val searchf_bt_unify_valid: searchinfo -> term -> match Seq.seq Seq.seq -end; - -structure EqSubst: EQSUBST = -struct - -(* changes object "=" to meta "==" which prepares a given rewrite rule *) -fun prep_meta_eq ctxt = - Simplifier.mksimps ctxt #> map Drule.zero_var_indexes; - -(* make free vars into schematic vars with index zero *) -fun unfix_frees frees = - fold (K (Thm.forall_elim_var 0)) frees o Drule.forall_intr_list frees; - - -type match = - ((indexname * (sort * typ)) list (* type instantiations *) - * (indexname * (typ * term)) list) (* term instantiations *) - * (string * typ) list (* fake named type abs env *) - * (string * typ) list (* type abs env *) - * term; (* outer term *) - -type searchinfo = - Proof.context - * int (* maxidx *) - * Zipper.T; (* focusterm to search under *) - - -(* skipping non-empty sub-sequences but when we reach the end - of the seq, remembering how much we have left to skip. *) -datatype 'a skipseq = - SkipMore of int | - SkipSeq of 'a Seq.seq Seq.seq; - -(* given a seqseq, skip the first m non-empty seq's, note deficit *) -fun skipto_skipseq m s = - let - fun skip_occs n sq = - (case Seq.pull sq of - NONE => SkipMore n - | SOME (h, t) => - (case Seq.pull h of - NONE => skip_occs n t - | SOME _ => if n <= 1 then SkipSeq (Seq.cons h t) else skip_occs (n - 1) t)) - in skip_occs m s end; - -(* note: outerterm is the taget with the match replaced by a bound - variable : ie: "P lhs" beocmes "%x. P x" - insts is the types of instantiations of vars in lhs - and typinsts is the type instantiations of types in the lhs - Note: Final rule is the rule lifted into the ontext of the - taget thm. *) -fun mk_foo_match mkuptermfunc Ts t = - let - val ty = Term.type_of t - val bigtype = rev (map snd Ts) ---> ty - fun mk_foo 0 t = t - | mk_foo i t = mk_foo (i - 1) (t $ (Bound (i - 1))) - val num_of_bnds = length Ts - (* foo_term = "fooabs y0 ... yn" where y's are local bounds *) - val foo_term = mk_foo num_of_bnds (Bound num_of_bnds) - in Abs ("fooabs", bigtype, mkuptermfunc foo_term) end; - -(* T is outer bound vars, n is number of locally bound vars *) -(* THINK: is order of Ts correct...? or reversed? *) -fun mk_fake_bound_name n = ":b_" ^ n; -fun fakefree_badbounds Ts t = - let val (FakeTs, Ts, newnames) = - fold_rev (fn (n, ty) => fn (FakeTs, Ts, usednames) => - let - val newname = singleton (Name.variant_list usednames) n - in - ((mk_fake_bound_name newname, ty) :: FakeTs, - (newname, ty) :: Ts, - newname :: usednames) - end) Ts ([], [], []) - in (FakeTs, Ts, Term.subst_bounds (map Free FakeTs, t)) end; - -(* before matching we need to fake the bound vars that are missing an - abstraction. In this function we additionally construct the - abstraction environment, and an outer context term (with the focus - abstracted out) for use in rewriting with RW_Inst.rw *) -fun prep_zipper_match z = - let - val t = Zipper.trm z - val c = Zipper.ctxt z - val Ts = Zipper.C.nty_ctxt c - val (FakeTs', Ts', t') = fakefree_badbounds Ts t - val absterm = mk_foo_match (Zipper.C.apply c) Ts' t' - in - (t', (FakeTs', Ts', absterm)) - end; - -(* Unification with exception handled *) -(* given context, max var index, pat, tgt; returns Seq of instantiations *) -fun clean_unify ctxt ix (a as (pat, tgt)) = - let - (* type info will be re-derived, maybe this can be cached - for efficiency? *) - val pat_ty = Term.type_of pat; - val tgt_ty = Term.type_of tgt; - (* FIXME is it OK to ignore the type instantiation info? - or should I be using it? *) - val typs_unify = - SOME (Sign.typ_unify (Proof_Context.theory_of ctxt) (pat_ty, tgt_ty) (Vartab.empty, ix)) - handle Type.TUNIFY => NONE; - in - (case typs_unify of - SOME (typinsttab, ix2) => - let - (* FIXME is it right to throw away the flexes? - or should I be using them somehow? *) - fun mk_insts env = - (Vartab.dest (Envir.type_env env), - Vartab.dest (Envir.term_env env)); - val initenv = - Envir.Envir {maxidx = ix2, tenv = Vartab.empty, tyenv = typinsttab}; - val useq = Unify.smash_unifiers (Context.Proof ctxt) [a] initenv - handle ListPair.UnequalLengths => Seq.empty - | Term.TERM _ => Seq.empty; - fun clean_unify' useq () = - (case (Seq.pull useq) of - NONE => NONE - | SOME (h, t) => SOME (mk_insts h, Seq.make (clean_unify' t))) - handle ListPair.UnequalLengths => NONE - | Term.TERM _ => NONE; - in - (Seq.make (clean_unify' useq)) - end - | NONE => Seq.empty) - end; - -(* Unification for zippers *) -(* Note: Ts is a modified version of the original names of the outer - bound variables. New names have been introduced to make sure they are - unique w.r.t all names in the term and each other. usednames' is - oldnames + new names. *) -fun clean_unify_z ctxt maxidx pat z = - let val (t, (FakeTs, Ts, absterm)) = prep_zipper_match z in - Seq.map (fn insts => (insts, FakeTs, Ts, absterm)) - (clean_unify ctxt maxidx (t, pat)) - end; - - -fun bot_left_leaf_of (l $ _) = bot_left_leaf_of l - | bot_left_leaf_of (Abs (_, _, t)) = bot_left_leaf_of t - | bot_left_leaf_of x = x; - -(* Avoid considering replacing terms which have a var at the head as - they always succeed trivially, and uninterestingly. *) -fun valid_match_start z = - (case bot_left_leaf_of (Zipper.trm z) of - Var _ => false - | _ => true); - -(* search from top, left to right, then down *) -val search_lr_all = ZipperSearch.all_bl_ur; - -(* search from top, left to right, then down *) -fun search_lr_valid validf = - let - fun sf_valid_td_lr z = - let val here = if validf z then [Zipper.Here z] else [] in - (case Zipper.trm z of - _ $ _ => - [Zipper.LookIn (Zipper.move_down_left z)] @ here @ - [Zipper.LookIn (Zipper.move_down_right z)] - | Abs _ => here @ [Zipper.LookIn (Zipper.move_down_abs z)] - | _ => here) - end; - in Zipper.lzy_search sf_valid_td_lr end; - -(* search from bottom to top, left to right *) -fun search_bt_valid validf = - let - fun sf_valid_td_lr z = - let val here = if validf z then [Zipper.Here z] else [] in - (case Zipper.trm z of - _ $ _ => - [Zipper.LookIn (Zipper.move_down_left z), - Zipper.LookIn (Zipper.move_down_right z)] @ here - | Abs _ => [Zipper.LookIn (Zipper.move_down_abs z)] @ here - | _ => here) - end; - in Zipper.lzy_search sf_valid_td_lr end; - -fun searchf_unify_gen f (ctxt, maxidx, z) lhs = - Seq.map (clean_unify_z ctxt maxidx lhs) (Zipper.limit_apply f z); - -(* search all unifications *) -val searchf_lr_unify_all = searchf_unify_gen search_lr_all; - -(* search only for 'valid' unifiers (non abs subterms and non vars) *) -val searchf_lr_unify_valid = searchf_unify_gen (search_lr_valid valid_match_start); - -val searchf_bt_unify_valid = searchf_unify_gen (search_bt_valid valid_match_start); - -(* apply a substitution in the conclusion of the theorem *) -(* cfvs are certified free var placeholders for goal params *) -(* conclthm is a theorem of for just the conclusion *) -(* m is instantiation/match information *) -(* rule is the equation for substitution *) -fun apply_subst_in_concl ctxt i st (cfvs, conclthm) rule m = - RW_Inst.rw ctxt m rule conclthm - |> unfix_frees cfvs - |> Conv.fconv_rule Drule.beta_eta_conversion - |> (fn r => resolve_tac ctxt [r] i st); - -(* substitute within the conclusion of goal i of gth, using a meta -equation rule. Note that we assume rule has var indicies zero'd *) -fun prep_concl_subst ctxt i gth = - let - val th = Thm.incr_indexes 1 gth; - val tgt_term = Thm.prop_of th; - - val (fixedbody, fvs) = IsaND.fix_alls_term ctxt i tgt_term; - val cfvs = rev (map (Thm.cterm_of ctxt) fvs); - - val conclterm = Logic.strip_imp_concl fixedbody; - val conclthm = Thm.trivial (Thm.cterm_of ctxt conclterm); - val maxidx = Thm.maxidx_of th; - val ft = - (Zipper.move_down_right (* ==> *) - o Zipper.move_down_left (* Trueprop *) - o Zipper.mktop - o Thm.prop_of) conclthm - in - ((cfvs, conclthm), (ctxt, maxidx, ft)) - end; - -(* substitute using an object or meta level equality *) -fun eqsubst_tac' ctxt searchf instepthm i st = - let - val (cvfsconclthm, searchinfo) = prep_concl_subst ctxt i st; - val stepthms = Seq.of_list (prep_meta_eq ctxt instepthm); - fun rewrite_with_thm r = - let val (lhs,_) = Logic.dest_equals (Thm.concl_of r) in - searchf searchinfo lhs - |> Seq.maps (apply_subst_in_concl ctxt i st cvfsconclthm r) - end; - in stepthms |> Seq.maps rewrite_with_thm end; - - -(* General substitution of multiple occurrences using one of - the given theorems *) - -fun skip_first_occs_search occ srchf sinfo lhs = - (case skipto_skipseq occ (srchf sinfo lhs) of - SkipMore _ => Seq.empty - | SkipSeq ss => Seq.flat ss); - -(* The "occs" argument is a list of integers indicating which occurrence -w.r.t. the search order, to rewrite. Backtracking will also find later -occurrences, but all earlier ones are skipped. Thus you can use [0] to -just find all rewrites. *) - -fun eqsubst_tac ctxt occs thms i st = - let val nprems = Thm.nprems_of st in - if nprems < i then Seq.empty else - let - val thmseq = Seq.of_list thms; - fun apply_occ occ st = - thmseq |> Seq.maps (fn r => - eqsubst_tac' ctxt - (skip_first_occs_search occ searchf_lr_unify_valid) r - (i + (Thm.nprems_of st - nprems)) st); - val sorted_occs = Library.sort (rev_order o int_ord) occs; - in - Seq.maps distinct_subgoals_tac (Seq.EVERY (map apply_occ sorted_occs) st) - end - end; - - -(* apply a substitution inside assumption j, keeps asm in the same place *) -fun apply_subst_in_asm ctxt i st rule ((cfvs, j, _, pth),m) = - let - val st2 = Thm.rotate_rule (j - 1) i st; (* put premice first *) - val preelimrule = - RW_Inst.rw ctxt m rule pth - |> (Seq.hd o prune_params_tac ctxt) - |> Thm.permute_prems 0 ~1 (* put old asm first *) - |> unfix_frees cfvs (* unfix any global params *) - |> Conv.fconv_rule Drule.beta_eta_conversion; (* normal form *) - in - (* ~j because new asm starts at back, thus we subtract 1 *) - Seq.map (Thm.rotate_rule (~ j) (Thm.nprems_of rule + i)) - (dresolve_tac ctxt [preelimrule] i st2) - end; - - -(* prepare to substitute within the j'th premise of subgoal i of gth, -using a meta-level equation. Note that we assume rule has var indicies -zero'd. Note that we also assume that premt is the j'th premice of -subgoal i of gth. Note the repetition of work done for each -assumption, i.e. this can be made more efficient for search over -multiple assumptions. *) -fun prep_subst_in_asm ctxt i gth j = - let - val th = Thm.incr_indexes 1 gth; - val tgt_term = Thm.prop_of th; - - val (fixedbody, fvs) = IsaND.fix_alls_term ctxt i tgt_term; - val cfvs = rev (map (Thm.cterm_of ctxt) fvs); - - val asmt = nth (Logic.strip_imp_prems fixedbody) (j - 1); - val asm_nprems = length (Logic.strip_imp_prems asmt); - - val pth = Thm.trivial ((Thm.cterm_of ctxt) asmt); - val maxidx = Thm.maxidx_of th; - - val ft = - (Zipper.move_down_right (* trueprop *) - o Zipper.mktop - o Thm.prop_of) pth - in ((cfvs, j, asm_nprems, pth), (ctxt, maxidx, ft)) end; - -(* prepare subst in every possible assumption *) -fun prep_subst_in_asms ctxt i gth = - map (prep_subst_in_asm ctxt i gth) - ((fn l => Library.upto (1, length l)) - (Logic.prems_of_goal (Thm.prop_of gth) i)); - - -(* substitute in an assumption using an object or meta level equality *) -fun eqsubst_asm_tac' ctxt searchf skipocc instepthm i st = - let - val asmpreps = prep_subst_in_asms ctxt i st; - val stepthms = Seq.of_list (prep_meta_eq ctxt instepthm); - fun rewrite_with_thm r = - let - val (lhs,_) = Logic.dest_equals (Thm.concl_of r); - fun occ_search occ [] = Seq.empty - | occ_search occ ((asminfo, searchinfo)::moreasms) = - (case searchf searchinfo occ lhs of - SkipMore i => occ_search i moreasms - | SkipSeq ss => - Seq.append (Seq.map (Library.pair asminfo) (Seq.flat ss)) - (occ_search 1 moreasms)) (* find later substs also *) - in - occ_search skipocc asmpreps |> Seq.maps (apply_subst_in_asm ctxt i st r) - end; - in stepthms |> Seq.maps rewrite_with_thm end; - - -fun skip_first_asm_occs_search searchf sinfo occ lhs = - skipto_skipseq occ (searchf sinfo lhs); - -fun eqsubst_asm_tac ctxt occs thms i st = - let val nprems = Thm.nprems_of st in - if nprems < i then Seq.empty - else - let - val thmseq = Seq.of_list thms; - fun apply_occ occ st = - thmseq |> Seq.maps (fn r => - eqsubst_asm_tac' ctxt - (skip_first_asm_occs_search searchf_lr_unify_valid) occ r - (i + (Thm.nprems_of st - nprems)) st); - val sorted_occs = Library.sort (rev_order o int_ord) occs; - in - Seq.maps distinct_subgoals_tac (Seq.EVERY (map apply_occ sorted_occs) st) - end - end; - -(* combination method that takes a flag (true indicates that subst - should be done to an assumption, false = apply to the conclusion of - the goal) as well as the theorems to use *) -val _ = - Theory.setup - (Method.setup \<^binding>\sub\ - (Scan.lift (Args.mode "asm" -- Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0]) -- - Attrib.thms >> (fn ((asm, occs), inthms) => fn ctxt => - SIMPLE_METHOD' ((if asm then eqsubst_asm_tac else eqsubst_tac) ctxt occs inthms))) - "single-step substitution" - #> - (Method.setup \<^binding>\subst\ - (Scan.lift (Args.mode "asm" -- Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0]) -- - Attrib.thms >> (fn ((asm, occs), inthms) => fn ctxt => - SIMPLE_METHOD' (SIDE_CONDS - ((if asm then eqsubst_asm_tac else eqsubst_tac) ctxt occs inthms) - ctxt))) - "single-step substitution with auto-typechecking")) - -end; diff --git a/spartan/lib/equality.ML b/spartan/lib/equality.ML deleted file mode 100644 index 023147b..0000000 --- a/spartan/lib/equality.ML +++ /dev/null @@ -1,90 +0,0 @@ -(* Title: equality.ML - Author: Joshua Chen - -Equality reasoning with identity types. -*) - -structure Equality: -sig - -val dest_Id: term -> term * term * term - -val push_hyp_tac: term * term -> Proof.context -> int -> tactic -val induction_tac: term -> term -> term -> term -> Proof.context -> tactic -val equality_context_tac: Facts.ref -> Proof.context -> context_tactic - -end = struct - -fun dest_Id tm = case tm of - Const (\<^const_name>\Id\, _) $ A $ x $ y => (A, x, y) - | _ => error "dest_Id" - -(*Context assumptions that have already been pushed into the type family*) -structure Inserts = Proof_Data ( - type T = term Item_Net.T - val init = K (Item_Net.init Term.aconv_untyped single) -) - -fun push_hyp_tac (t, _) = - Subgoal.FOCUS_PARAMS (fn {context = ctxt, concl, ...} => - let - val (_, C) = Lib.dest_typing (Thm.term_of concl) - val B = Thm.cterm_of ctxt (Lib.lambda_var t C) - val a = Thm.cterm_of ctxt t - (*The resolvent is PiE[where ?B=B and ?a=a]*) - val resolvent = - Drule.infer_instantiate' ctxt [NONE, NONE, SOME B, SOME a] @{thm PiE} - in - HEADGOAL (resolve_tac ctxt [resolvent]) - THEN SOMEGOAL (known_tac ctxt) - end) - -fun induction_tac p A x y ctxt = - let - val [p, A, x, y] = map (Thm.cterm_of ctxt) [p, A, x, y] - in - HEADGOAL (resolve_tac ctxt - [Drule.infer_instantiate' ctxt [SOME p, SOME A, SOME x, SOME y] @{thm IdE}]) - end - -val side_conds_tac = TRY oo typechk_tac - -fun equality_context_tac fact ctxt = - let - val eq_th = Proof_Context.get_fact_single ctxt fact - val (p, (A, x, y)) = (Lib.dest_typing ##> dest_Id) (Thm.prop_of eq_th) - - val hyps = - Facts.props (Proof_Context.facts_of ctxt) - |> filter (fn (th, _) => Lib.is_typing (Thm.prop_of th)) - |> map (Lib.dest_typing o Thm.prop_of o fst) - |> filter_out (fn (t, _) => - Term.aconv (t, p) orelse Item_Net.member (Inserts.get ctxt) t) - |> map (fn (t, T) => ((t, T), Lib.subterm_count_distinct [p, x, y] T)) - |> filter (fn (_, i) => i > 0) - (*`t1: T1` comes before `t2: T2` if T1 contains t2 as subterm. - If they are incomparable, then order by decreasing - `subterm_count [p, x, y] T`*) - |> sort (fn (((t1, _), i), ((_, T2), j)) => - Lib.cond_order (Lib.subterm_order T2 t1) (int_ord (j, i))) - |> map #1 - - val record_inserts = - Inserts.map (fold (fn (t, _) => fn net => Item_Net.update t net) hyps) - - val tac = - fold (fn hyp => fn tac => tac THEN HEADGOAL (push_hyp_tac hyp ctxt)) - hyps all_tac - THEN ( - induction_tac p A x y ctxt - THEN RANGE (replicate 3 (typechk_tac ctxt) @ [side_conds_tac ctxt]) 1 - ) - THEN ( - REPEAT_DETERM_N (length hyps) (SOMEGOAL (resolve_tac ctxt @{thms PiI})) - THEN ALLGOALS (side_conds_tac ctxt) - ) - in - fn (ctxt, st) => Context_Tactic.TACTIC_CONTEXT (record_inserts ctxt) (tac st) - end - -end diff --git a/spartan/lib/focus.ML b/spartan/lib/focus.ML deleted file mode 100644 index 1d8de78..0000000 --- a/spartan/lib/focus.ML +++ /dev/null @@ -1,125 +0,0 @@ -(* Title: focus.ML - Author: Makarius Wenzel, Joshua Chen - -A modified version of the Isar `subgoal` command -that keeps schematic variables in the goal state. - -Modified from code originally written by Makarius Wenzel. -*) - -local - -fun param_bindings ctxt (param_suffix, raw_param_specs) st = - let - val _ = if Thm.no_prems st then error "No subgoals!" else () - val subgoal = #1 (Logic.dest_implies (Thm.prop_of st)) - val subgoal_params = - map (apfst (Name.internal o Name.clean)) (Term.strip_all_vars subgoal) - |> Term.variant_frees subgoal |> map #1 - - val n = length subgoal_params - val m = length raw_param_specs - val _ = - m <= n orelse - error ("Excessive subgoal parameter specification" ^ - Position.here_list (map snd (drop n raw_param_specs))) - - val param_specs = - raw_param_specs |> map - (fn (NONE, _) => NONE - | (SOME x, pos) => - let - val b = #1 (#1 (Proof_Context.cert_var (Binding.make (x, pos), NONE, NoSyn) ctxt)) - val _ = Variable.check_name b - in SOME b end) - |> param_suffix ? append (replicate (n - m) NONE) - - fun bindings (SOME x :: xs) (_ :: ys) = x :: bindings xs ys - | bindings (NONE :: xs) (y :: ys) = Binding.name y :: bindings xs ys - | bindings _ ys = map Binding.name ys - in bindings param_specs subgoal_params end - -fun gen_schematic_subgoal prep_atts raw_result_binding raw_prems_binding param_specs state = - let - val _ = Proof.assert_backward state - - val state1 = state - |> Proof.map_context (Proof_Context.set_mode Proof_Context.mode_schematic) - |> Proof.refine_insert [] - - val {context = ctxt, facts = facts, goal = st} = Proof.raw_goal state1 - - val result_binding = apsnd (map (prep_atts ctxt)) raw_result_binding - val (prems_binding, do_prems) = - (case raw_prems_binding of - SOME (b, raw_atts) => ((b, map (prep_atts ctxt) raw_atts), true) - | NONE => (Binding.empty_atts, false)) - - val (subgoal_focus, _) = - (if do_prems then Subgoal.focus_prems else Subgoal.focus_params) ctxt - 1 (SOME (param_bindings ctxt param_specs st)) st - - fun after_qed (ctxt'', [[result]]) = - Proof.end_block #> (fn state' => - let - val ctxt' = Proof.context_of state' - val results' = - Proof_Context.export ctxt'' ctxt' (Conjunction.elim_conjunctions result) - in - state' - |> Proof.refine_primitive (fn _ => fn _ => - Subgoal.retrofit ctxt'' ctxt' (#params subgoal_focus) (#asms subgoal_focus) 1 - (Goal.protect 0 result) st - |> Seq.hd) - |> Proof.map_context - (#2 o Proof_Context.note_thmss "" [(result_binding, [(results', [])])]) - end) - #> Proof.reset_facts - #> Proof.enter_backward - in - state1 - |> Proof.enter_forward - |> Proof.using_facts [] - |> Proof.begin_block - |> Proof.map_context (fn _ => - #context subgoal_focus - |> Proof_Context.note_thmss "" [(prems_binding, [(#prems subgoal_focus, [])])] |> #2) - |> Proof.internal_goal (K (K ())) (Proof_Context.get_mode ctxt) true "subgoal" - NONE after_qed [] [] [(Binding.empty_atts, [(Thm.term_of (#concl subgoal_focus), [])])] |> #2 - |> Proof.using_facts facts - |> pair subgoal_focus - end - -val opt_fact_binding = - Scan.optional (Parse.binding -- Parse.opt_attribs || Parse.attribs >> pair Binding.empty) - Binding.empty_atts - -val for_params = - Scan.optional - (\<^keyword>\vars\ |-- - Parse.!!! ((Scan.option Parse.dots >> is_some) -- - (Scan.repeat1 (Parse.maybe_position Parse.name_position)))) - (false, []) - -val schematic_subgoal_cmd = gen_schematic_subgoal Attrib.attribute_cmd - -val parser = - opt_fact_binding - -- (Scan.option (\<^keyword>\prems\ |-- Parse.!!! opt_fact_binding)) - -- for_params >> (fn ((a, b), c) => - Toplevel.proofs (Seq.make_results o Seq.single o #2 o schematic_subgoal_cmd a b c)) - -in - -(** Outer syntax commands **) - -val _ = Outer_Syntax.command \<^command_keyword>\focus\ - "focus on first subgoal within backward refinement, without instantiating schematic vars" - parser - -val _ = Outer_Syntax.command \<^command_keyword>\\\ "focus bullet" parser -val _ = Outer_Syntax.command \<^command_keyword>\\<^item>\ "focus bullet" parser -val _ = Outer_Syntax.command \<^command_keyword>\\<^enum>\ "focus bullet" parser -val _ = Outer_Syntax.command \<^command_keyword>\~\ "focus bullet" parser - -end diff --git a/spartan/lib/goals.ML b/spartan/lib/goals.ML deleted file mode 100644 index 9f394f0..0000000 --- a/spartan/lib/goals.ML +++ /dev/null @@ -1,214 +0,0 @@ -(* Title: goals.ML - Author: Makarius Wenzel, Joshua Chen - -Goal statements and proof term export. - -Modified from code originally written by Makarius Wenzel. -*) - -local - -val long_keyword = - Parse_Spec.includes >> K "" || - Parse_Spec.long_statement_keyword - -val long_statement = - Scan.optional - (Parse_Spec.opt_thm_name ":" --| Scan.ahead long_keyword) - Binding.empty_atts -- - Scan.optional Parse_Spec.includes [] -- Parse_Spec.long_statement - >> (fn ((binding, includes), (elems, concl)) => - (true, binding, includes, elems, concl)) - -val short_statement = - Parse_Spec.statement -- Parse_Spec.if_statement -- Parse.for_fixes - >> (fn ((shows, assumes), fixes) => - (false, Binding.empty_atts, [], - [Element.Fixes fixes, Element.Assumes assumes], - Element.Shows shows)) - -fun prep_statement prep_att prep_stmt raw_elems raw_stmt ctxt = - let - val (stmt, elems_ctxt) = prep_stmt raw_elems raw_stmt ctxt - val prems = Assumption.local_prems_of elems_ctxt ctxt - val stmt_ctxt = fold (fold (Proof_Context.augment o fst) o snd) - stmt elems_ctxt - in - case raw_stmt of - Element.Shows _ => - let val stmt' = Attrib.map_specs (map prep_att) stmt - in (([], prems, stmt', NONE), stmt_ctxt) end - | Element.Obtains raw_obtains => - let - val asms_ctxt = stmt_ctxt - |> fold (fn ((name, _), asm) => - snd o Proof_Context.add_assms Assumption.assume_export - [((name, [Context_Rules.intro_query NONE]), asm)]) stmt - val that = Assumption.local_prems_of asms_ctxt stmt_ctxt - val ([(_, that')], that_ctxt) = asms_ctxt - |> Proof_Context.set_stmt true - |> Proof_Context.note_thmss "" - [((Binding.name Auto_Bind.thatN, []), [(that, [])])] - ||> Proof_Context.restore_stmt asms_ctxt - - val stmt' = [ - (Binding.empty_atts, - [(#2 (#1 (Obtain.obtain_thesis ctxt)), [])]) - ] - in - ((Obtain.obtains_attribs raw_obtains, prems, stmt', SOME that'), - that_ctxt) - end - end - -fun define_proof_term name (local_name, [th]) lthy = - let - fun make_name_binding suffix local_name = - let val base_local_name = Long_Name.base_name local_name - in - Binding.qualified_name - ((case base_local_name of - "" => name - | _ => base_local_name) - ^(case suffix of - SOME "prf" => "_prf" - | SOME "def" => "_def" - | _ => "")) - end - - val (prems, concl) = - (Logic.strip_assums_hyp (Thm.prop_of th), - Logic.strip_assums_concl (Thm.prop_of th)) - in - if not (Lib.is_typing concl) then - ([], lthy) - else let - val prems_vars = distinct Term.aconv (flat - (map (Lib.collect_subterms is_Var) prems)) - - val concl_vars = Lib.collect_subterms is_Var - (Lib.term_of_typing concl) - - val params = inter Term.aconv concl_vars prems_vars - - val prf_tm = - fold_rev lambda params (Lib.term_of_typing concl) - - val ((_, (_, raw_def)), lthy') = Local_Theory.define - ((make_name_binding NONE local_name, Mixfix.NoSyn), - ((make_name_binding (SOME "prf") local_name, []), prf_tm)) lthy - - val def = - fold - (fn th1 => fn th2 => Thm.combination th2 th1) - (map (Thm.reflexive o Thm.cterm_of lthy) params) - raw_def - - val ((_, def'), lthy'') = Local_Theory.note - ((make_name_binding (SOME "def") local_name, []), [def]) - lthy' - in - (def', lthy'') - end - end - | define_proof_term _ _ _ = error - ("Unimplemented: handling proof terms of multiple facts in" - ^" single result") - -fun gen_schematic_theorem - bundle_includes prep_att prep_stmt - gen_prf long kind before_qed after_qed (name, raw_atts) - raw_includes raw_elems raw_concl int lthy = - let - val _ = Local_Theory.assert lthy; - - val elems = raw_elems |> map (Element.map_ctxt_attrib (prep_att lthy)) - val ((more_atts, prems, stmt, facts), goal_ctxt) = lthy - |> bundle_includes raw_includes - |> prep_statement (prep_att lthy) prep_stmt elems raw_concl - val atts = more_atts @ map (prep_att lthy) raw_atts - val pos = Position.thread_data () - - val prems_name = if long then Auto_Bind.assmsN else Auto_Bind.thatN - - fun after_qed' results goal_ctxt' = - let - val results' = burrow - (map (Goal.norm_result lthy) o Proof_Context.export goal_ctxt' lthy) - results - - val ((res, lthy'), substmts) = - if forall (Binding.is_empty_atts o fst) stmt - then ((map (pair "") results', lthy), false) - else - (Local_Theory.notes_kind kind - (map2 (fn (b, _) => fn ths => (b, [(ths, [])])) stmt results') - lthy, - true) - - val (res', lthy'') = - if gen_prf - then - let - val (prf_tm_defs, lthy'') = - fold - (fn result => fn (defs, lthy) => - apfst (fn new_defs => defs @ new_defs) - (define_proof_term (Binding.name_of name) result lthy)) - res ([], lthy') - - val res_folded = - map (apsnd (map (Local_Defs.fold lthy'' prf_tm_defs))) res - in - Local_Theory.notes_kind kind - [((name, @{attributes [typechk]} @ atts), - [(maps #2 res_folded, [])])] - lthy'' - end - else - Local_Theory.notes_kind kind - [((name, atts), [(maps #2 res, [])])] - lthy' - - val _ = Proof_Display.print_results int pos lthy'' - ((kind, Binding.name_of name), map (fn (_, ths) => ("", ths)) res') - - val _ = - if substmts then map - (fn (name, ths) => Proof_Display.print_results int pos lthy'' - (("and", name), [("", ths)])) - res - else [] - in - after_qed results' lthy'' - end - in - goal_ctxt - |> not (null prems) ? - (Proof_Context.note_thmss "" [((Binding.name prems_name, []), [(prems, [])])] #> snd) - |> Proof.theorem before_qed after_qed' (map snd stmt) - |> (case facts of NONE => I | SOME ths => Proof.refine_insert ths) - end - -val schematic_theorem_cmd = - gen_schematic_theorem - Bundle.includes_cmd - Attrib.check_src - Expression.read_statement - -fun theorem spec descr = - Outer_Syntax.local_theory_to_proof' spec ("state " ^ descr) - (Scan.option (Args.parens (Args.$$$ "derive")) - -- (long_statement || short_statement) >> - (fn (opt_derive, (long, binding, includes, elems, concl)) => - schematic_theorem_cmd - (case opt_derive of SOME "derive" => true | _ => false) - long descr NONE (K I) binding includes elems concl)) -in - -val _ = theorem \<^command_keyword>\Theorem\ "Theorem" -val _ = theorem \<^command_keyword>\Lemma\ "Lemma" -val _ = theorem \<^command_keyword>\Corollary\ "Corollary" -val _ = theorem \<^command_keyword>\Proposition\ "Proposition" - -end diff --git a/spartan/lib/implicits.ML b/spartan/lib/implicits.ML deleted file mode 100644 index 04fc825..0000000 --- a/spartan/lib/implicits.ML +++ /dev/null @@ -1,78 +0,0 @@ -structure Implicits : -sig - -val implicit_defs: Proof.context -> (term * term) Symtab.table -val implicit_defs_attr: attribute -val make_holes: Proof.context -> term -> term - -end = struct - -structure Defs = Generic_Data ( - type T = (term * term) Symtab.table - val empty = Symtab.empty - val extend = I - val merge = Symtab.merge (Term.aconv o #1) -) - -val implicit_defs = Defs.get o Context.Proof - -val implicit_defs_attr = Thm.declaration_attribute (fn th => - let - val (t, def) = Lib.dest_eq (Thm.prop_of th) - val (head, args) = Term.strip_comb t - val def' = fold_rev lambda args def - in - Defs.map (Symtab.update (Term.term_name head, (head, def'))) - end) - -fun make_holes ctxt = - let - fun iarg_to_hole (Const (\<^const_name>\iarg\, T)) = - Const (\<^const_name>\hole\, T) - | iarg_to_hole t = t - - fun expand head args = - let - fun betapplys (head', args') = - Term.betapplys (map_aterms iarg_to_hole head', args') - in - case head of - Abs (x, T, t) => - list_comb (Abs (x, T, Lib.traverse_term expand t), args) - | _ => - case Symtab.lookup (implicit_defs ctxt) (Term.term_name head) of - SOME (t, def) => betapplys - (Envir.expand_atom - (Term.fastype_of head) - (Term.fastype_of t, def), - args) - | NONE => list_comb (head, args) - end - - fun holes_to_vars t = - let - val count = Lib.subterm_count (Const (\<^const_name>\hole\, dummyT)) - - fun subst (Const (\<^const_name>\hole\, T)) (Var (idx, _)::_) Ts = - let - val bounds = map Bound (0 upto (length Ts - 1)) - val T' = foldr1 (op -->) (Ts @ [T]) - in - foldl1 (op $) (Var (idx, T')::bounds) - end - | subst (Abs (x, T, t)) vs Ts = Abs (x, T, subst t vs (T::Ts)) - | subst (t $ u) vs Ts = - let val n = count t - in subst t (take n vs) Ts $ subst u (drop n vs) Ts end - | subst t _ _ = t - - val vars = map (fn n => Var ((n, 0), dummyT)) - (Name.invent (Variable.names_of ctxt) "*" (count t)) - in - subst t vars [] - end - in - Lib.traverse_term expand #> holes_to_vars - end - -end diff --git a/spartan/lib/lib.ML b/spartan/lib/lib.ML deleted file mode 100644 index 615f601..0000000 --- a/spartan/lib/lib.ML +++ /dev/null @@ -1,145 +0,0 @@ -structure Lib : -sig - -(*Lists*) -val max: ('a * 'a -> bool) -> 'a list -> 'a -val maxint: int list -> int - -(*Terms*) -val is_rigid: term -> bool -val dest_eq: term -> term * term -val mk_Var: string -> int -> typ -> term -val lambda_var: term -> term -> term - -val is_typing: term -> bool -val dest_typing: term -> term * term -val term_of_typing: term -> term -val type_of_typing: term -> term -val mk_Pi: term -> term -> term -> term - -val typing_of_term: term -> term - -(*Goals*) -val rigid_typing_concl: term -> bool - -(*Subterms*) -val has_subterm: term list -> term -> bool -val subterm_count: term -> term -> int -val subterm_count_distinct: term list -> term -> int -val traverse_term: (term -> term list -> term) -> term -> term -val collect_subterms: (term -> bool) -> term -> term list - -(*Orderings*) -val subterm_order: term -> term -> order -val cond_order: order -> order -> order - -end = struct - - -(** Lists **) - -fun max gt (x::xs) = fold (fn a => fn b => if gt (a, b) then a else b) xs x - | max _ [] = error "max of empty list" - -val maxint = max (op >) - - -(** Terms **) - -(* Meta *) - -val is_rigid = not o is_Var o head_of - -fun dest_eq (Const (\<^const_name>\Pure.eq\, _) $ t $ def) = (t, def) - | dest_eq _ = error "dest_eq" - -fun mk_Var name idx T = Var ((name, idx), T) - -fun lambda_var x tm = - let - fun var_args (Var (idx, T)) = Var (idx, \<^typ>\o\ --> T) $ x - | var_args t = t - in - tm |> map_aterms var_args - |> lambda x - end - -(* Object *) - -fun is_typing (Const (\<^const_name>\has_type\, _) $ _ $ _) = true - | is_typing _ = false - -fun dest_typing (Const (\<^const_name>\has_type\, _) $ t $ T) = (t, T) - | dest_typing _ = error "dest_typing" - -val term_of_typing = #1 o dest_typing -val type_of_typing = #2 o dest_typing - -fun mk_Pi v typ body = Const (\<^const_name>\Pi\, dummyT) $ typ $ lambda v body - -fun typing_of_term tm = \<^const>\has_type\ $ tm $ Var (("*?", 0), \<^typ>\o\) -(*The above is a bit hacky; basically we need to guarantee that the schematic - var is fresh*) - - -(** Goals **) - -fun rigid_typing_concl goal = - let val concl = Logic.strip_assums_concl goal - in is_typing concl andalso is_rigid (term_of_typing concl) end - - -(** Subterms **) - -fun has_subterm tms = - Term.exists_subterm - (foldl1 (op orf) (map (fn t => fn s => Term.aconv_untyped (s, t)) tms)) - -fun subterm_count s t = - let - fun count (t1 $ t2) i = i + count t1 0 + count t2 0 - | count (Abs (_, _, t)) i = i + count t 0 - | count t i = if Term.aconv_untyped (s, t) then i + 1 else i - in - count t 0 - end - -(*Number of distinct subterms in `tms` that appear in `tm`*) -fun subterm_count_distinct tms tm = - length (filter I (map (fn t => has_subterm [t] tm) tms)) - -(* - "Folds" a function f over the term structure of t by traversing t from child - nodes upwards through parents. At each node n in the term syntax tree, f is - additionally passed a list of the results of f at all children of n. -*) -fun traverse_term f t = - let - fun map_aux (Abs (x, T, t)) = Abs (x, T, map_aux t) - | map_aux t = - let - val (head, args) = Term.strip_comb t - val args' = map map_aux args - in - f head args' - end - in - map_aux t - end - -fun collect_subterms f (t $ u) = collect_subterms f t @ collect_subterms f u - | collect_subterms f (Abs (_, _, t)) = collect_subterms f t - | collect_subterms f t = if f t then [t] else [] - - -(** Orderings **) - -fun subterm_order t1 t2 = - if has_subterm [t1] t2 then LESS - else if has_subterm [t2] t1 then GREATER - else EQUAL - -fun cond_order o1 o2 = case o1 of EQUAL => o2 | _ => o1 - - -end diff --git a/spartan/lib/rewrite.ML b/spartan/lib/rewrite.ML deleted file mode 100644 index f9c5d8e..0000000 --- a/spartan/lib/rewrite.ML +++ /dev/null @@ -1,465 +0,0 @@ -(* Title: rewrite.ML - Author: Christoph Traut, Lars Noschinski, TU Muenchen - Modified: Joshua Chen, University of Innsbruck - -This is a rewrite method that supports subterm-selection based on patterns. - -The patterns accepted by rewrite are of the following form: - ::= | "concl" | "asm" | "for" "(" ")" - ::= (in | at ) [] - ::= [] ("to" ) - -This syntax was clearly inspired by Gonthier's and Tassi's language of -patterns but has diverged significantly during its development. - -We also allow introduction of identifiers for bound variables, -which can then be used to match arbitrary subterms inside abstractions. - -This code is slightly modified from the original at HOL/Library/rewrite.ML, -to incorporate auto-typechecking for type theory. -*) - -infix 1 then_pconv; -infix 0 else_pconv; - -signature REWRITE = -sig - type patconv = Proof.context -> Type.tyenv * (string * term) list -> cconv - val then_pconv: patconv * patconv -> patconv - val else_pconv: patconv * patconv -> patconv - val abs_pconv: patconv -> string option * typ -> patconv (*XXX*) - val fun_pconv: patconv -> patconv - val arg_pconv: patconv -> patconv - val imp_pconv: patconv -> patconv - val params_pconv: patconv -> patconv - val forall_pconv: patconv -> string option * typ option -> patconv - val all_pconv: patconv - val for_pconv: patconv -> (string option * typ option) list -> patconv - val concl_pconv: patconv -> patconv - val asm_pconv: patconv -> patconv - val asms_pconv: patconv -> patconv - val judgment_pconv: patconv -> patconv - val in_pconv: patconv -> patconv - val match_pconv: patconv -> term * (string option * typ) list -> patconv - val rewrs_pconv: term option -> thm list -> patconv - - datatype ('a, 'b) pattern = At | In | Term of 'a | Concl | Asm | For of 'b list - - val mk_hole: int -> typ -> term - - val rewrite_conv: Proof.context - -> (term * (string * typ) list, string * typ option) pattern list * term option - -> thm list - -> conv -end - -structure Rewrite : REWRITE = -struct - -datatype ('a, 'b) pattern = At | In | Term of 'a | Concl | Asm | For of 'b list - -exception NO_TO_MATCH - -val holeN = Name.internal "_hole" - -fun prep_meta_eq ctxt = Simplifier.mksimps ctxt #> map Drule.zero_var_indexes - - -(* holes *) - -fun mk_hole i T = Var ((holeN, i), T) - -fun is_hole (Var ((name, _), _)) = (name = holeN) - | is_hole _ = false - -fun is_hole_const (Const (\<^const_name>\rewrite_HOLE\, _)) = true - | is_hole_const _ = false - -val hole_syntax = - let - (* Modified variant of Term.replace_hole *) - fun replace_hole Ts (Const (\<^const_name>\rewrite_HOLE\, T)) i = - (list_comb (mk_hole i (Ts ---> T), map_range Bound (length Ts)), i + 1) - | replace_hole Ts (Abs (x, T, t)) i = - let val (t', i') = replace_hole (T :: Ts) t i - in (Abs (x, T, t'), i') end - | replace_hole Ts (t $ u) i = - let - val (t', i') = replace_hole Ts t i - val (u', i'') = replace_hole Ts u i' - in (t' $ u', i'') end - | replace_hole _ a i = (a, i) - fun prep_holes ts = #1 (fold_map (replace_hole []) ts 1) - in - Context.proof_map (Syntax_Phases.term_check 101 "hole_expansion" (K prep_holes)) - #> Proof_Context.set_mode Proof_Context.mode_pattern - end - - -(* pattern conversions *) - -type patconv = Proof.context -> Type.tyenv * (string * term) list -> cterm -> thm - -fun (cv1 then_pconv cv2) ctxt tytenv ct = (cv1 ctxt tytenv then_conv cv2 ctxt tytenv) ct - -fun (cv1 else_pconv cv2) ctxt tytenv ct = (cv1 ctxt tytenv else_conv cv2 ctxt tytenv) ct - -fun raw_abs_pconv cv ctxt tytenv ct = - case Thm.term_of ct of - Abs _ => CConv.abs_cconv (fn (x, ctxt') => cv x ctxt' tytenv) ctxt ct - | t => raise TERM ("raw_abs_pconv", [t]) - -fun raw_fun_pconv cv ctxt tytenv ct = - case Thm.term_of ct of - _ $ _ => CConv.fun_cconv (cv ctxt tytenv) ct - | t => raise TERM ("raw_fun_pconv", [t]) - -fun raw_arg_pconv cv ctxt tytenv ct = - case Thm.term_of ct of - _ $ _ => CConv.arg_cconv (cv ctxt tytenv) ct - | t => raise TERM ("raw_arg_pconv", [t]) - -fun abs_pconv cv (s,T) ctxt (tyenv, ts) ct = - let val u = Thm.term_of ct - in - case try (fastype_of #> dest_funT) u of - NONE => raise TERM ("abs_pconv: no function type", [u]) - | SOME (U, _) => - let - val tyenv' = - if T = dummyT then tyenv - else Sign.typ_match (Proof_Context.theory_of ctxt) (T, U) tyenv - val eta_expand_cconv = - case u of - Abs _=> Thm.reflexive - | _ => CConv.rewr_cconv @{thm eta_expand} - fun add_ident NONE _ l = l - | add_ident (SOME name) ct l = (name, Thm.term_of ct) :: l - val abs_cv = CConv.abs_cconv (fn (ct, ctxt) => cv ctxt (tyenv', add_ident s ct ts)) ctxt - in (eta_expand_cconv then_conv abs_cv) ct end - handle Pattern.MATCH => raise TYPE ("abs_pconv: types don't match", [T,U], [u]) - end - -fun fun_pconv cv ctxt tytenv ct = - case Thm.term_of ct of - _ $ _ => CConv.fun_cconv (cv ctxt tytenv) ct - | Abs (_, T, _ $ Bound 0) => abs_pconv (fun_pconv cv) (NONE, T) ctxt tytenv ct - | t => raise TERM ("fun_pconv", [t]) - -local - -fun arg_pconv_gen cv0 cv ctxt tytenv ct = - case Thm.term_of ct of - _ $ _ => cv0 (cv ctxt tytenv) ct - | Abs (_, T, _ $ Bound 0) => abs_pconv (arg_pconv_gen cv0 cv) (NONE, T) ctxt tytenv ct - | t => raise TERM ("arg_pconv_gen", [t]) - -in - -fun arg_pconv ctxt = arg_pconv_gen CConv.arg_cconv ctxt -fun imp_pconv ctxt = arg_pconv_gen (CConv.concl_cconv 1) ctxt - -end - -(* Move to B in !!x_1 ... x_n. B. Do not eta-expand *) -fun params_pconv cv ctxt tytenv ct = - let val pconv = - case Thm.term_of ct of - Const (\<^const_name>\Pure.all\, _) $ Abs _ => (raw_arg_pconv o raw_abs_pconv) (fn _ => params_pconv cv) - | Const (\<^const_name>\Pure.all\, _) => raw_arg_pconv (params_pconv cv) - | _ => cv - in pconv ctxt tytenv ct end - -fun forall_pconv cv ident ctxt tytenv ct = - case Thm.term_of ct of - Const (\<^const_name>\Pure.all\, T) $ _ => - let - val def_U = T |> dest_funT |> fst |> dest_funT |> fst - val ident' = apsnd (the_default (def_U)) ident - in arg_pconv (abs_pconv cv ident') ctxt tytenv ct end - | t => raise TERM ("forall_pconv", [t]) - -fun all_pconv _ _ = Thm.reflexive - -fun for_pconv cv idents ctxt tytenv ct = - let - fun f rev_idents (Const (\<^const_name>\Pure.all\, _) $ t) = - let val (rev_idents', cv') = f rev_idents (case t of Abs (_,_,u) => u | _ => t) - in - case rev_idents' of - [] => ([], forall_pconv cv' (NONE, NONE)) - | (x :: xs) => (xs, forall_pconv cv' x) - end - | f rev_idents _ = (rev_idents, cv) - in - case f (rev idents) (Thm.term_of ct) of - ([], cv') => cv' ctxt tytenv ct - | _ => raise CTERM ("for_pconv", [ct]) - end - -fun concl_pconv cv ctxt tytenv ct = - case Thm.term_of ct of - (Const (\<^const_name>\Pure.imp\, _) $ _) $ _ => imp_pconv (concl_pconv cv) ctxt tytenv ct - | _ => cv ctxt tytenv ct - -fun asm_pconv cv ctxt tytenv ct = - case Thm.term_of ct of - (Const (\<^const_name>\Pure.imp\, _) $ _) $ _ => CConv.with_prems_cconv ~1 (cv ctxt tytenv) ct - | t => raise TERM ("asm_pconv", [t]) - -fun asms_pconv cv ctxt tytenv ct = - case Thm.term_of ct of - (Const (\<^const_name>\Pure.imp\, _) $ _) $ _ => - ((CConv.with_prems_cconv ~1 oo cv) else_pconv imp_pconv (asms_pconv cv)) ctxt tytenv ct - | t => raise TERM ("asms_pconv", [t]) - -fun judgment_pconv cv ctxt tytenv ct = - if Object_Logic.is_judgment ctxt (Thm.term_of ct) - then arg_pconv cv ctxt tytenv ct - else cv ctxt tytenv ct - -fun in_pconv cv ctxt tytenv ct = - (cv else_pconv - raw_fun_pconv (in_pconv cv) else_pconv - raw_arg_pconv (in_pconv cv) else_pconv - raw_abs_pconv (fn _ => in_pconv cv)) - ctxt tytenv ct - -fun replace_idents idents t = - let - fun subst ((n1, s)::ss) (t as Free (n2, _)) = if n1 = n2 then s else subst ss t - | subst _ t = t - in Term.map_aterms (subst idents) t end - -fun match_pconv cv (t,fixes) ctxt (tyenv, env_ts) ct = - let - val t' = replace_idents env_ts t - val thy = Proof_Context.theory_of ctxt - val u = Thm.term_of ct - - fun descend_hole fixes (Abs (_, _, t)) = - (case descend_hole fixes t of - NONE => NONE - | SOME (fix :: fixes', pos) => SOME (fixes', abs_pconv pos fix) - | SOME ([], _) => raise Match (* less fixes than abstractions on path to hole *)) - | descend_hole fixes (t as l $ r) = - let val (f, _) = strip_comb t - in - if is_hole f - then SOME (fixes, cv) - else - (case descend_hole fixes l of - SOME (fixes', pos) => SOME (fixes', fun_pconv pos) - | NONE => - (case descend_hole fixes r of - SOME (fixes', pos) => SOME (fixes', arg_pconv pos) - | NONE => NONE)) - end - | descend_hole fixes t = - if is_hole t then SOME (fixes, cv) else NONE - - val to_hole = descend_hole (rev fixes) #> the_default ([], cv) #> snd - in - case try (Pattern.match thy (apply2 Logic.mk_term (t',u))) (tyenv, Vartab.empty) of - NONE => raise TERM ("match_pconv: Does not match pattern", [t, t',u]) - | SOME (tyenv', _) => to_hole t ctxt (tyenv', env_ts) ct - end - -fun rewrs_pconv to thms ctxt (tyenv, env_ts) = - let - fun instantiate_normalize_env ctxt env thm = - let - val prop = Thm.prop_of thm - val norm_type = Envir.norm_type o Envir.type_env - val insts = Term.add_vars prop [] - |> map (fn x as (s, T) => - ((s, norm_type env T), Thm.cterm_of ctxt (Envir.norm_term env (Var x)))) - val tyinsts = Term.add_tvars prop [] - |> map (fn x => (x, Thm.ctyp_of ctxt (norm_type env (TVar x)))) - in Drule.instantiate_normalize (tyinsts, insts) thm end - - fun unify_with_rhs context to env thm = - let - val (_, rhs) = thm |> Thm.concl_of |> Logic.dest_equals - val env' = Pattern.unify context (Logic.mk_term to, Logic.mk_term rhs) env - handle Pattern.Unif => raise NO_TO_MATCH - in env' end - - fun inst_thm_to _ (NONE, _) thm = thm - | inst_thm_to (ctxt : Proof.context) (SOME to, env) thm = - instantiate_normalize_env ctxt (unify_with_rhs (Context.Proof ctxt) to env thm) thm - - fun inst_thm ctxt idents (to, tyenv) thm = - let - (* Replace any identifiers with their corresponding bound variables. *) - val maxidx = Term.maxidx_typs (map (snd o snd) (Vartab.dest tyenv)) 0 - val env = Envir.Envir {maxidx = maxidx, tenv = Vartab.empty, tyenv = tyenv} - val maxidx = Envir.maxidx_of env |> fold Term.maxidx_term (the_list to) - val thm' = Thm.incr_indexes (maxidx + 1) thm - in SOME (inst_thm_to ctxt (Option.map (replace_idents idents) to, env) thm') end - handle NO_TO_MATCH => NONE - - in CConv.rewrs_cconv (map_filter (inst_thm ctxt env_ts (to, tyenv)) thms) end - -fun rewrite_conv ctxt (pattern, to) thms ct = - let - fun apply_pat At = judgment_pconv - | apply_pat In = in_pconv - | apply_pat Asm = params_pconv o asms_pconv - | apply_pat Concl = params_pconv o concl_pconv - | apply_pat (For idents) = (fn cv => for_pconv cv (map (apfst SOME) idents)) - | apply_pat (Term x) = (fn cv => match_pconv cv (apsnd (map (apfst SOME)) x)) - - val cv = fold_rev apply_pat pattern - - fun distinct_prems th = - case Seq.pull (distinct_subgoals_tac th) of - NONE => th - | SOME (th', _) => th' - - val rewrite = rewrs_pconv to (maps (prep_meta_eq ctxt) thms) - in cv rewrite ctxt (Vartab.empty, []) ct |> distinct_prems end - -fun rewrite_export_tac ctxt (pat, pat_ctxt) thms = - let - val export = case pat_ctxt of - NONE => I - | SOME inner => singleton (Proof_Context.export inner ctxt) - in CCONVERSION (export o rewrite_conv ctxt pat thms) end - -val _ = - Theory.setup - let - fun mk_fix s = (Binding.name s, NONE, NoSyn) - - val raw_pattern : (string, binding * string option * mixfix) pattern list parser = - let - val sep = (Args.$$$ "at" >> K At) || (Args.$$$ "in" >> K In) - val atom = (Args.$$$ "asm" >> K Asm) || - (Args.$$$ "concl" >> K Concl) || - (Args.$$$ "for" |-- Args.parens (Scan.optional Parse.vars []) >> For) || - (Parse.term >> Term) - val sep_atom = sep -- atom >> (fn (s,a) => [s,a]) - - fun append_default [] = [Concl, In] - | append_default (ps as Term _ :: _) = Concl :: In :: ps - | append_default [For x, In] = [For x, Concl, In] - | append_default (For x :: (ps as In :: Term _:: _)) = For x :: Concl :: ps - | append_default ps = ps - - in Scan.repeats sep_atom >> (rev #> append_default) end - - fun context_lift (scan : 'a parser) f = fn (context : Context.generic, toks) => - let - val (r, toks') = scan toks - val (r', context') = Context.map_proof_result (fn ctxt => f ctxt r) context - in (r', (context', toks' : Token.T list)) end - - fun read_fixes fixes ctxt = - let fun read_typ (b, rawT, mx) = (b, Option.map (Syntax.read_typ ctxt) rawT, mx) - in Proof_Context.add_fixes (map read_typ fixes) ctxt end - - fun prep_pats ctxt (ps : (string, binding * string option * mixfix) pattern list) = - let - fun add_constrs ctxt n (Abs (x, T, t)) = - let - val (x', ctxt') = yield_singleton Proof_Context.add_fixes (mk_fix x) ctxt - in - (case add_constrs ctxt' (n+1) t of - NONE => NONE - | SOME ((ctxt'', n', xs), t') => - let - val U = Type_Infer.mk_param n [] - val u = Type.constraint (U --> dummyT) (Abs (x, T, t')) - in SOME ((ctxt'', n', (x', U) :: xs), u) end) - end - | add_constrs ctxt n (l $ r) = - (case add_constrs ctxt n l of - SOME (c, l') => SOME (c, l' $ r) - | NONE => - (case add_constrs ctxt n r of - SOME (c, r') => SOME (c, l $ r') - | NONE => NONE)) - | add_constrs ctxt n t = - if is_hole_const t then SOME ((ctxt, n, []), t) else NONE - - fun prep (Term s) (n, ctxt) = - let - val t = Syntax.parse_term ctxt s - val ((ctxt', n', bs), t') = - the_default ((ctxt, n, []), t) (add_constrs ctxt (n+1) t) - in (Term (t', bs), (n', ctxt')) end - | prep (For ss) (n, ctxt) = - let val (ns, ctxt') = read_fixes ss ctxt - in (For ns, (n, ctxt')) end - | prep At (n,ctxt) = (At, (n, ctxt)) - | prep In (n,ctxt) = (In, (n, ctxt)) - | prep Concl (n,ctxt) = (Concl, (n, ctxt)) - | prep Asm (n,ctxt) = (Asm, (n, ctxt)) - - val (xs, (_, ctxt')) = fold_map prep ps (0, ctxt) - - in (xs, ctxt') end - - fun prep_args ctxt (((raw_pats, raw_to), raw_ths)) = - let - - fun check_terms ctxt ps to = - let - fun safe_chop (0: int) xs = ([], xs) - | safe_chop n (x :: xs) = chop (n - 1) xs |>> cons x - | safe_chop _ _ = raise Match - - fun reinsert_pat _ (Term (_, cs)) (t :: ts) = - let val (cs', ts') = safe_chop (length cs) ts - in (Term (t, map dest_Free cs'), ts') end - | reinsert_pat _ (Term _) [] = raise Match - | reinsert_pat ctxt (For ss) ts = - let val fixes = map (fn s => (s, Variable.default_type ctxt s)) ss - in (For fixes, ts) end - | reinsert_pat _ At ts = (At, ts) - | reinsert_pat _ In ts = (In, ts) - | reinsert_pat _ Concl ts = (Concl, ts) - | reinsert_pat _ Asm ts = (Asm, ts) - - fun free_constr (s,T) = Type.constraint T (Free (s, dummyT)) - fun mk_free_constrs (Term (t, cs)) = t :: map free_constr cs - | mk_free_constrs _ = [] - - val ts = maps mk_free_constrs ps @ the_list to - |> Syntax.check_terms (hole_syntax ctxt) - val ctxt' = fold Variable.declare_term ts ctxt - val (ps', (to', ts')) = fold_map (reinsert_pat ctxt') ps ts - ||> (fn xs => case to of NONE => (NONE, xs) | SOME _ => (SOME (hd xs), tl xs)) - val _ = case ts' of (_ :: _) => raise Match | [] => () - in ((ps', to'), ctxt') end - - val (pats, ctxt') = prep_pats ctxt raw_pats - - val ths = Attrib.eval_thms ctxt' raw_ths - val to = Option.map (Syntax.parse_term ctxt') raw_to - - val ((pats', to'), ctxt'') = check_terms ctxt' pats to - - in ((pats', ths, (to', ctxt)), ctxt'') end - - val to_parser = Scan.option ((Args.$$$ "to") |-- Parse.term) - - val subst_parser = - let val scan = raw_pattern -- to_parser -- Parse.thms1 - in context_lift scan prep_args end - in - Method.setup \<^binding>\rewr\ (subst_parser >> - (fn (pattern, inthms, (to, pat_ctxt)) => fn orig_ctxt => - SIMPLE_METHOD' - (rewrite_export_tac orig_ctxt ((pattern, to), SOME pat_ctxt) inthms))) - "single-step rewriting, allowing subterm selection via patterns" - #> - (Method.setup \<^binding>\rewrite\ (subst_parser >> - (fn (pattern, inthms, (to, pat_ctxt)) => fn orig_ctxt => - SIMPLE_METHOD' (SIDE_CONDS - (rewrite_export_tac orig_ctxt ((pattern, to), SOME pat_ctxt) inthms) - orig_ctxt))) - "single-step rewriting with auto-typechecking") - end -end diff --git a/spartan/lib/tactics.ML b/spartan/lib/tactics.ML deleted file mode 100644 index f23bfee..0000000 --- a/spartan/lib/tactics.ML +++ /dev/null @@ -1,233 +0,0 @@ -(* Title: tactics.ML - Author: Joshua Chen - -General tactics for dependent type theory. -*) - -structure Tactics(* : -sig - -val assumptions_tac: Proof.context -> int -> tactic -val known_tac: Proof.context -> int -> tactic -val typechk_tac: Proof.context -> int -> tactic -val auto_typechk: bool Config.T -val SIDE_CONDS: (int -> tactic) -> Proof.context -> int -> tactic -val rule_tac: thm list -> Proof.context -> int -> tactic -val dest_tac: int option -> thm list -> Proof.context -> int -> tactic -val intro_tac: Proof.context -> int -> tactic -val intros_tac: Proof.context -> int -> tactic -val old_elims_tac: term option -> Proof.context -> int -> tactic - -end *) = struct - -(*An assumption tactic that only solves typing goals with rigid terms and - judgmental equalities without schematic variables*) -fun assumptions_tac ctxt = SUBGOAL (fn (goal, i) => - let - val concl = Logic.strip_assums_concl goal - in - if - Lib.is_typing concl andalso Lib.is_rigid (Lib.term_of_typing concl) - orelse not ((exists_subterm is_Var) concl) - then assume_tac ctxt i - else no_tac - end) - -(*Solves typing goals with rigid term by resolving with context facts and - simplifier premises, or arbitrary goals by *non-unifying* assumption*) -fun known_tac ctxt = SUBGOAL (fn (goal, i) => - let - val concl = Logic.strip_assums_concl goal - in - ((if Lib.is_typing concl andalso Lib.is_rigid (Lib.term_of_typing concl) - then - let val ths = map fst (Facts.props (Proof_Context.facts_of ctxt)) - in resolve_tac ctxt (ths @ Simplifier.prems_of ctxt) end - else K no_tac) - ORELSE' assumptions_tac ctxt) i - end) - -(*Typechecking: try to solve goals of the form "a: A" where a is rigid*) -fun typechk_tac ctxt = - let - val tac = SUBGOAL (fn (goal, i) => - if Lib.rigid_typing_concl goal - then - let val net = Tactic.build_net - ((Named_Theorems.get ctxt \<^named_theorems>\typechk\) - @(Named_Theorems.get ctxt \<^named_theorems>\intros\) - @(map #1 (Elim.rules ctxt))) - in (resolve_from_net_tac ctxt net) i end - else no_tac) - in - REPEAT_ALL_NEW (known_tac ctxt ORELSE' tac) - end - -(*Many methods try to automatically discharge side conditions by typechecking. - Switch this flag off to discharge by non-unifying assumption instead.*) -val auto_typechk = Attrib.setup_config_bool \<^binding>\auto_typechk\ (K true) - -fun side_cond_tac ctxt = CHANGED o REPEAT o - (if Config.get ctxt auto_typechk then typechk_tac ctxt else known_tac ctxt) - -(*Combinator runs tactic and tries to discharge all new typing side conditions*) -fun SIDE_CONDS tac ctxt = tac THEN_ALL_NEW (TRY o side_cond_tac ctxt) - -local -fun mk_rules _ ths [] = ths - | mk_rules n ths ths' = - let val ths'' = foldr1 (op @) - (map (fn th => [rotate_prems n (th RS @{thm PiE})] handle THM _ => []) ths') - in - mk_rules n (ths @ ths') ths'' - end -in - -(*Resolves with given rules, discharging as many side conditions as possible*) -fun rule_tac ths ctxt = resolve_tac ctxt (mk_rules 0 [] ths) - -(*Attempts destruct-resolution with the n-th premise of the given rules*) -fun dest_tac opt_n ths ctxt = dresolve_tac ctxt - (mk_rules (case opt_n of NONE => 0 | SOME 0 => 0 | SOME n => n-1) [] ths) - -end - -(*Applies some introduction rule*) -fun intro_tac ctxt = SUBGOAL (fn (_, i) => SIDE_CONDS - (resolve_tac ctxt (Named_Theorems.get ctxt \<^named_theorems>\intros\)) ctxt i) - -fun intros_tac ctxt = SUBGOAL (fn (_, i) => - (CHANGED o REPEAT o CHANGED o intro_tac ctxt) i) - -(*Basic elimination tactic, only uses existing type judgments from the context - (performs no type synthesis)*) -fun old_elims_tac opt_tm ctxt = case opt_tm of - NONE => SUBGOAL (fn (_, i) => eresolve_tac ctxt (map #1 (Elim.rules ctxt)) i) - | SOME tm => SUBGOAL (fn (goal, i) => - let - fun elim_rule typing = - let - val hd = head_of (Lib.type_of_typing typing) - val opt_rl = Elim.lookup_rule ctxt hd - in - case opt_rl of - NONE => Drule.dummy_thm - | SOME (rl, _) => Drule.infer_instantiate' ctxt - [SOME (Thm.cterm_of ctxt tm)] rl - end - - val template = Lib.typing_of_term tm - - val facts = Proof_Context.facts_of ctxt - val candidate_typings = Facts.could_unify facts template - val candidate_rules = - map (elim_rule o Thm.prop_of o #1) candidate_typings - - val prems = Logic.strip_assums_hyp goal - val candidate_typings' = - filter (fn prem => Term.could_unify (template, prem)) prems - val candidate_rules' = map elim_rule candidate_typings' - in - (resolve_tac ctxt candidate_rules - ORELSE' eresolve_tac ctxt candidate_rules') i - end) - -(* Revamped general induction/elimination *) - -(*Pushes a context/goal premise typing t:T into a \-type*) -fun internalize_fact_tac t = - Subgoal.FOCUS_PARAMS (fn {context = ctxt, concl = raw_concl, ...} => - let - val concl = Logic.strip_assums_concl (Thm.term_of raw_concl) - val C = Lib.type_of_typing concl - val B = Thm.cterm_of ctxt (Lib.lambda_var t C) - val a = Thm.cterm_of ctxt t - (*The resolvent is PiE[where ?B=B and ?a=a]*) - val resolvent = - Drule.infer_instantiate' ctxt [NONE, NONE, SOME B, SOME a] @{thm PiE} - in - HEADGOAL (resolve_tac ctxt [resolvent]) - (*known_tac infers the correct type T inferred by unification*) - THEN SOMEGOAL (known_tac ctxt) - end) - -(*Premises that have already been pushed into the \-type*) -structure Inserts = Proof_Data ( - type T = term Item_Net.T - val init = K (Item_Net.init Term.aconv_untyped single) -) - -local - -fun elim_core_tac tms types ctxt = SUBGOAL (K ( - let - val rule_insts = map ((Elim.lookup_rule ctxt) o Term.head_of) types - val rules = flat (map - (fn rule_inst => case rule_inst of - NONE => [] - | SOME (rl, idxnames) => [Drule.infer_instantiate ctxt - (idxnames ~~ map (Thm.cterm_of ctxt) tms) rl]) - rule_insts) - in - HEADGOAL (resolve_tac ctxt rules) - THEN RANGE (replicate (length tms) (typechk_tac ctxt)) 1 - end handle Option => no_tac)) - -in - -fun elim_context_tac tms ctxt = case tms of - [] => CONTEXT_SUBGOAL (K (Context_Tactic.CONTEXT_TACTIC (HEADGOAL ( - SIDE_CONDS (eresolve_tac ctxt (map #1 (Elim.rules ctxt))) ctxt)))) - | major::_ => CONTEXT_SUBGOAL (fn (goal, _) => - let - val facts = Proof_Context.facts_of ctxt - val prems = Logic.strip_assums_hyp goal - val template = Lib.typing_of_term major - val types = - map (Thm.prop_of o #1) (Facts.could_unify facts template) - @ filter (fn prem => Term.could_unify (template, prem)) prems - |> map Lib.type_of_typing - in case types of - [] => Context_Tactic.CONTEXT_TACTIC no_tac - | _ => - let - val inserts = map (Thm.prop_of o fst) (Facts.props facts) @ prems - |> filter Lib.is_typing - |> map Lib.dest_typing - |> filter_out (fn (t, _) => - Term.aconv (t, major) orelse Item_Net.member (Inserts.get ctxt) t) - |> map (fn (t, T) => ((t, T), Lib.subterm_count_distinct tms T)) - |> filter (fn (_, i) => i > 0) - (*`t1: T1` comes before `t2: T2` if T1 contains t2 as subterm. - If they are incomparable, then order by decreasing - `subterm_count [p, x, y] T`*) - |> sort (fn (((t1, _), i), ((_, T2), j)) => - Lib.cond_order (Lib.subterm_order T2 t1) (int_ord (j, i))) - |> map (#1 o #1) - val record_inserts = Inserts.map (fold Item_Net.update inserts) - val tac = - (*Push premises having a subterm in `tms` into a \*) - fold (fn t => fn tac => - tac THEN HEADGOAL (internalize_fact_tac t ctxt)) - inserts all_tac - (*Apply elimination rule*) - THEN (HEADGOAL ( - elim_core_tac tms types ctxt - (*Pull pushed premises back out*) - THEN_ALL_NEW (SUBGOAL (fn (_, i) => - REPEAT_DETERM_N (length inserts) - (resolve_tac ctxt @{thms PiI} i))) - )) - (*Side conditions*) - THEN ALLGOALS (TRY o side_cond_tac ctxt) - in - fn (ctxt, st) => Context_Tactic.TACTIC_CONTEXT - (record_inserts ctxt) (tac st) - end - end) - -end - -end - -open Tactics diff --git a/spartan/theories/Equivalence.thy b/spartan/theories/Equivalence.thy deleted file mode 100644 index 2975738..0000000 --- a/spartan/theories/Equivalence.thy +++ /dev/null @@ -1,416 +0,0 @@ -theory Equivalence -imports Identity - -begin - -section \Homotopy\ - -definition "homotopy A B f g \ \x: A. f `x =\<^bsub>B x\<^esub> g `x" - -definition homotopy_i (infix "~" 100) - where [implicit]: "f ~ g \ homotopy ? ? f g" - -translations "f ~ g" \ "CONST homotopy A B f g" - -Lemma homotopy_type [typechk]: - assumes - "A: U i" - "\x. x: A \ B x: U i" - "f: \x: A. B x" "g: \x: A. B x" - shows "f ~ g: U i" - unfolding homotopy_def by typechk - -Lemma (derive) homotopy_refl [refl]: - assumes - "A: U i" - "f: \x: A. B x" - shows "f ~ f" - unfolding homotopy_def by intros - -Lemma (derive) hsym: - assumes - "f: \x: A. B x" - "g: \x: A. B x" - "A: U i" - "\x. x: A \ B x: U i" - shows "H: f ~ g \ g ~ f" - unfolding homotopy_def - apply intros - apply (rule pathinv) - \ by (elim H) - \ by typechk - done - -Lemma (derive) htrans: - assumes - "f: \x: A. B x" - "g: \x: A. B x" - "h: \x: A. B x" - "A: U i" - "\x. x: A \ B x: U i" - shows "\H1: f ~ g; H2: g ~ h\ \ f ~ h" - unfolding homotopy_def - apply intro - \ vars x - apply (rule pathcomp[where ?y="g x"]) - \<^item> by (elim H1) - \<^item> by (elim H2) - done - \ by typechk - done - -text \For calculations:\ - -lemmas - homotopy_sym [sym] = hsym[rotated 4] and - homotopy_trans [trans] = htrans[rotated 5] - -Lemma (derive) commute_homotopy: - assumes - "A: U i" "B: U i" - "x: A" "y: A" - "p: x =\<^bsub>A\<^esub> y" - "f: A \ B" "g: A \ B" - "H: homotopy A (\_. B) f g" - shows "(H x) \ g[p] = f[p] \ (H y)" - \ \Need this assumption unfolded for typechecking:\ - supply assms(8)[unfolded homotopy_def] - apply (eq p) - focus vars x - apply reduce - \ \Here it would really be nice to have automation for transport and - propositional equality.\ - apply (rule use_transport[where ?y="H x \ refl (g x)"]) - \ by (rule pathcomp_right_refl) - \ by (rule pathinv) (rule pathcomp_left_refl) - \ by typechk - done - done - -Corollary (derive) commute_homotopy': - assumes - "A: U i" - "x: A" - "f: A \ A" - "H: homotopy A (\_. A) f (id A)" - shows "H (f x) = f [H x]" -oops - -Lemma homotopy_id_left [typechk]: - assumes "A: U i" "B: U i" "f: A \ B" - shows "homotopy_refl A f: (id B) \ f ~ f" - unfolding homotopy_refl_def homotopy_def by reduce - -Lemma homotopy_id_right [typechk]: - assumes "A: U i" "B: U i" "f: A \ B" - shows "homotopy_refl A f: f \ (id A) ~ f" - unfolding homotopy_refl_def homotopy_def by reduce - -Lemma homotopy_funcomp_left: - assumes - "H: homotopy B C g g'" - "f: A \ B" - "g: \x: B. C x" - "g': \x: B. C x" - "A: U i" "B: U i" - "\x. x: B \ C x: U i" - shows "homotopy A {} (g \\<^bsub>A\<^esub> f) (g' \\<^bsub>A\<^esub> f)" - unfolding homotopy_def - apply (intro; reduce) - apply (insert \H: _\[unfolded homotopy_def]) - apply (elim H) - done - -Lemma homotopy_funcomp_right: - assumes - "H: homotopy A (\_. B) f f'" - "f: A \ B" - "f': A \ B" - "g: B \ C" - "A: U i" "B: U i" "C: U i" - shows "homotopy A {} (g \\<^bsub>A\<^esub> f) (g \\<^bsub>A\<^esub> f')" - unfolding homotopy_def - apply (intro; reduce) - apply (insert \H: _\[unfolded homotopy_def]) - apply (dest PiE, assumption) - apply (rule ap, assumption) - done - - -section \Quasi-inverse and bi-invertibility\ - -subsection \Quasi-inverses\ - -definition "qinv A B f \ \g: B \ A. - homotopy A (\_. A) (g \\<^bsub>A\<^esub> f) (id A) \ homotopy B (\_. B) (f \\<^bsub>B\<^esub> g) (id B)" - -lemma qinv_type [typechk]: - assumes "A: U i" "B: U i" "f: A \ B" - shows "qinv A B f: U i" - unfolding qinv_def by typechk - -definition qinv_i ("qinv") - where [implicit]: "qinv f \ Equivalence.qinv ? ? f" - -translations "qinv f" \ "CONST Equivalence.qinv A B f" - -Lemma (derive) id_qinv: - assumes "A: U i" - shows "qinv (id A)" - unfolding qinv_def - apply intro defer - apply intro defer - apply (rule homotopy_id_right) - apply (rule homotopy_id_left) - done - -Lemma (derive) quasiinv_qinv: - assumes "A: U i" "B: U i" "f: A \ B" - shows "prf: qinv f \ qinv (fst prf)" - unfolding qinv_def - apply intro - \ by (rule \f:_\) - \ apply (elim "prf") - focus vars g HH - apply intro - \<^item> by reduce (snd HH) - \<^item> by reduce (fst HH) - done - done - done - -Lemma (derive) funcomp_qinv: - assumes - "A: U i" "B: U i" "C: U i" - "f: A \ B" "g: B \ C" - shows "qinv f \ qinv g \ qinv (g \ f)" - apply (intros, unfold qinv_def, elims) - focus - prems prms - vars _ _ finv _ ginv _ HfA HfB HgB HgC - - apply intro - apply (rule funcompI[where ?f=ginv and ?g=finv]) - - text \Now a whole bunch of rewrites and we're done.\ -oops - -subsection \Bi-invertible maps\ - -definition "biinv A B f \ - (\g: B \ A. homotopy A (\_. A) (g \\<^bsub>A\<^esub> f) (id A)) - \ (\g: B \ A. homotopy B (\_. B) (f \\<^bsub>B\<^esub> g) (id B))" - -lemma biinv_type [typechk]: - assumes "A: U i" "B: U i" "f: A \ B" - shows "biinv A B f: U i" - unfolding biinv_def by typechk - -definition biinv_i ("biinv") - where [implicit]: "biinv f \ Equivalence.biinv ? ? f" - -translations "biinv f" \ "CONST Equivalence.biinv A B f" - -Lemma (derive) qinv_imp_biinv: - assumes - "A: U i" "B: U i" - "f: A \ B" - shows "?prf: qinv f \ biinv f" - apply intros - unfolding qinv_def biinv_def - by (rule Sig_dist_exp) - -text \ - Show that bi-invertible maps are quasi-inverses, as a demonstration of how to - work in this system. -\ - -Lemma (derive) biinv_imp_qinv: - assumes "A: U i" "B: U i" "f: A \ B" - shows "biinv f \ qinv f" - - text \Split the hypothesis \<^term>\biinv f\ into its components:\ - apply intro - unfolding biinv_def - apply elims - - text \Name the components:\ - focus prems vars _ _ _ g H1 h H2 - thm \g:_\ \h:_\ \H1:_\ \H2:_\ - - text \ - \<^term>\g\ is a quasi-inverse to \<^term>\f\, so the proof will be a triple - \<^term>\>\. - \ - unfolding qinv_def - apply intro - \ by (rule \g: _\) - \ apply intro - text \The first part \<^prop>\?H1: g \ f ~ id A\ is given by \<^term>\H1\.\ - apply (rule \H1: _\) - - text \ - It remains to prove \<^prop>\?H2: f \ g ~ id B\. First show that \g ~ h\, - then the result follows from @{thm \H2: f \ h ~ id B\}. Here a proof - block is used to calculate "forward". - \ - proof - - have "g ~ g \ (id B)" by reduce refl - also have "g \ (id B) ~ g \ f \ h" - by (rule homotopy_funcomp_right) (rule \H2:_\[symmetric]) - also have "g \ f \ h ~ (id A) \ h" - by (subst funcomp_assoc[symmetric]) - (rule homotopy_funcomp_left, rule \H1:_\) - also have "(id A) \ h ~ h" by reduce refl - finally have "g ~ h" by this - - then have "f \ g ~ f \ h" by (rule homotopy_funcomp_right) - - with \H2:_\ - show "f \ g ~ id B" - by (rule homotopy_trans) (assumption+, typechk) - qed - done - done - -Lemma (derive) id_biinv: - "A: U i \ biinv (id A)" - by (rule qinv_imp_biinv) (rule id_qinv) - -Lemma (derive) funcomp_biinv: - assumes - "A: U i" "B: U i" "C: U i" - "f: A \ B" "g: B \ C" - shows "biinv f \ biinv g \ biinv (g \ f)" - apply intros - focus vars biinv\<^sub>f biinv\<^sub>g - - text \Follows from \funcomp_qinv\.\ -oops - - -section \Equivalence\ - -text \ - Following the HoTT book, we first define equivalence in terms of - bi-invertibility. -\ - -definition equivalence (infix "\" 110) - where "A \ B \ \f: A \ B. Equivalence.biinv A B f" - -lemma equivalence_type [typechk]: - assumes "A: U i" "B: U i" - shows "A \ B: U i" - unfolding equivalence_def by typechk - -Lemma (derive) equivalence_refl: - assumes "A: U i" - shows "A \ A" - unfolding equivalence_def - apply intro defer - apply (rule qinv_imp_biinv) defer - apply (rule id_qinv) - done - -text \ - The following could perhaps be easier with transport (but then I think we need - univalence?)... -\ - -Lemma (derive) equivalence_symmetric: - assumes "A: U i" "B: U i" - shows "A \ B \ B \ A" - apply intros - unfolding equivalence_def - apply elim - \ vars _ f "prf" - apply (dest (4) biinv_imp_qinv) - apply intro - \<^item> unfolding qinv_def by (rule fst[of "(biinv_imp_qinv A B f) prf"]) - \<^item> by (rule qinv_imp_biinv) (rule quasiinv_qinv) - done - done - -Lemma (derive) equivalence_transitive: - assumes "A: U i" "B: U i" "C: U i" - shows "A \ B \ B \ C \ A \ C" - apply intros - unfolding equivalence_def - - text \Use \funcomp_biinv\.\ -oops - -text \ - Equal types are equivalent. We give two proofs: the first by induction, and - the second by following the HoTT book and showing that transport is an - equivalence. -\ - -Lemma - assumes - "A: U i" "B: U i" "p: A =\<^bsub>U i\<^esub> B" - shows "A \ B" - by (eq p) (rule equivalence_refl) - -text \ - The following proof is wordy because (1) the typechecker doesn't rewrite, and - (2) we don't yet have universe automation. -\ - -Lemma (derive) id_imp_equiv: - assumes - "A: U i" "B: U i" "p: A =\<^bsub>U i\<^esub> B" - shows ": A \ B" - unfolding equivalence_def - apply intros defer - - \ \Switch off auto-typechecking, which messes with universe levels\ - supply [[auto_typechk=false]] - - \ apply (eq p, typechk) - \<^item> prems vars A B - apply (rewrite at A in "A \ B" id_comp[symmetric]) - apply (rewrite at B in "_ \ B" id_comp[symmetric]) - apply (rule transport, rule U_in_U) - apply (rule lift_universe_codomain, rule U_in_U) - apply (typechk, rule U_in_U) - done - \<^item> prems vars A - apply (subst transport_comp) - \<^enum> by (rule U_in_U) - \<^enum> by reduce (rule lift_universe) - \<^enum> by reduce (rule id_biinv) - done - done - - \ \ \Similar proof as in the first subgoal above\ - apply (rewrite at A in "A \ B" id_comp[symmetric]) - apply (rewrite at B in "_ \ B" id_comp[symmetric]) - apply (rule transport, rule U_in_U) - apply (rule lift_universe_codomain, rule U_in_U) - apply (typechk, rule U_in_U) - done - done - -(*Uncomment this to see all implicits from here on. -no_translations - "f x" \ "f `x" - "x = y" \ "x =\<^bsub>A\<^esub> y" - "g \ f" \ "g \\<^bsub>A\<^esub> f" - "p\" \ "CONST pathinv A x y p" - "p \ q" \ "CONST pathcomp A x y z p q" - "fst" \ "CONST Spartan.fst A B" - "snd" \ "CONST Spartan.snd A B" - "f[p]" \ "CONST ap A B x y f p" - "trans P p" \ "CONST transport A P x y p" - "trans_const B p" \ "CONST transport_const A B x y p" - "lift P p u" \ "CONST pathlift A P x y p u" - "apd f p" \ "CONST Identity.apd A P f x y p" - "f ~ g" \ "CONST homotopy A B f g" - "qinv f" \ "CONST Equivalence.qinv A B f" - "biinv f" \ "CONST Equivalence.biinv A B f" -*) - - -end diff --git a/spartan/theories/Identity.thy b/spartan/theories/Identity.thy deleted file mode 100644 index 3a982f6..0000000 --- a/spartan/theories/Identity.thy +++ /dev/null @@ -1,464 +0,0 @@ -chapter \The identity type\ - -text \ - The identity type, the higher groupoid structure of types, - and type families as fibrations. -\ - -theory Identity -imports Spartan - -begin - -axiomatization - Id :: \o \ o \ o \ o\ and - refl :: \o \ o\ and - IdInd :: \o \ (o \ o \ o \ o) \ (o \ o) \ o \ o \ o \ o\ - -syntax "_Id" :: \o \ o \ o \ o\ ("(2_ =\<^bsub>_\<^esub>/ _)" [111, 0, 111] 110) - -translations "a =\<^bsub>A\<^esub> b" \ "CONST Id A a b" - -axiomatization where - IdF: "\A: U i; a: A; b: A\ \ a =\<^bsub>A\<^esub> b: U i" and - - IdI: "a: A \ refl a: a =\<^bsub>A\<^esub> a" and - - IdE: "\ - p: a =\<^bsub>A\<^esub> b; - a: A; - b: A; - \x y p. \p: x =\<^bsub>A\<^esub> y; x: A; y: A\ \ C x y p: U i; - \x. x: A \ f x: C x x (refl x) - \ \ IdInd A (\x y p. C x y p) f a b p: C a b p" and - - Id_comp: "\ - a: A; - \x y p. \x: A; y: A; p: x =\<^bsub>A\<^esub> y\ \ C x y p: U i; - \x. x: A \ f x: C x x (refl x) - \ \ IdInd A (\x y p. C x y p) f a a (refl a) \ f a" - -lemmas - [intros] = IdF IdI and - [elims "?p" "?a" "?b"] = IdE and - [comps] = Id_comp and - [refl] = IdI - - -section \Path induction\ - -method_setup eq = \ -Args.term >> (fn tm => fn ctxt => CONTEXT_METHOD (K ( - CONTEXT_SUBGOAL (fn (goal, i) => - let - val facts = Proof_Context.facts_of ctxt - val prems = Logic.strip_assums_hyp goal - val template = \<^const>\has_type\ - $ tm - $ (\<^const>\Id\ $ Var (("*?A", 0), \<^typ>\o\) - $ Var (("*?x", 0), \<^typ>\o\) - $ Var (("*?y", 0), \<^typ>\o\)) - val types = - map (Thm.prop_of o #1) (Facts.could_unify facts template) - @ filter (fn prem => Term.could_unify (template, prem)) prems - |> map Lib.type_of_typing - in case types of - (\<^const>\Id\ $ _ $ x $ y)::_ => - elim_context_tac [tm, x, y] ctxt i - | _ => Context_Tactic.CONTEXT_TACTIC no_tac - end) 1))) -\ - - -section \Symmetry and transitivity\ - -Lemma (derive) pathinv: - assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y" - shows "y =\<^bsub>A\<^esub> x" - by (eq p) intro - -lemma pathinv_comp [comps]: - assumes "x: A" "A: U i" - shows "pathinv A x x (refl x) \ refl x" - unfolding pathinv_def by reduce - -Lemma (derive) pathcomp: - assumes - "A: U i" "x: A" "y: A" "z: A" - "p: x =\<^bsub>A\<^esub> y" "q: y =\<^bsub>A\<^esub> z" - shows - "x =\<^bsub>A\<^esub> z" - apply (eq p) - focus prems vars x p - apply (eq p) - apply intro - done - done - -lemma pathcomp_comp [comps]: - assumes "a: A" "A: U i" - shows "pathcomp A a a a (refl a) (refl a) \ refl a" - unfolding pathcomp_def by reduce - - -section \Notation\ - -definition Id_i (infix "=" 110) - where [implicit]: "Id_i x y \ x =\<^bsub>?\<^esub> y" - -definition pathinv_i ("_\" [1000]) - where [implicit]: "pathinv_i p \ pathinv ? ? ? p" - -definition pathcomp_i (infixl "\" 121) - where [implicit]: "pathcomp_i p q \ pathcomp ? ? ? ? p q" - -translations - "x = y" \ "x =\<^bsub>A\<^esub> y" - "p\" \ "CONST pathinv A x y p" - "p \ q" \ "CONST pathcomp A x y z p q" - - -section \Calculational reasoning\ - -consts rhs :: \'a\ ("''''") - -ML \ -local fun last_rhs ctxt = - let - val this_name = Name_Space.full_name (Proof_Context.naming_of ctxt) - (Binding.name Auto_Bind.thisN) - val this = #thms (the (Proof_Context.lookup_fact ctxt this_name)) - handle Option => [] - val rhs = case map Thm.prop_of this of - [\<^const>\has_type\ $ _ $ (\<^const>\Id\ $ _ $ _ $ y)] => y - | _ => Term.dummy - in - map_aterms (fn t => case t of Const (\<^const_name>\rhs\, _) => rhs | _ => t) - end -in val _ = Context.>> - (Syntax_Phases.term_check 5 "" (fn ctxt => map (last_rhs ctxt))) -end -\ - -lemmas - [sym] = pathinv[rotated 3] and - [trans] = pathcomp[rotated 4] - - -section \Basic propositional equalities\ - -Lemma (derive) pathcomp_left_refl: - assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y" - shows "(refl x) \ p = p" - apply (eq p) - apply (reduce; intros) - done - -Lemma (derive) pathcomp_right_refl: - assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y" - shows "p \ (refl y) = p" - apply (eq p) - apply (reduce; intros) - done - -Lemma (derive) pathcomp_left_inv: - assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y" - shows "p\ \ p = refl y" - apply (eq p) - apply (reduce; intros) - done - -Lemma (derive) pathcomp_right_inv: - assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y" - shows "p \ p\ = refl x" - apply (eq p) - apply (reduce; intros) - done - -Lemma (derive) pathinv_pathinv: - assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y" - shows "p\\ = p" - apply (eq p) - apply (reduce; intros) - done - -Lemma (derive) pathcomp_assoc: - assumes - "A: U i" "x: A" "y: A" "z: A" "w: A" - "p: x =\<^bsub>A\<^esub> y" "q: y =\<^bsub>A\<^esub> z" "r: z =\<^bsub>A\<^esub> w" - shows "p \ (q \ r) = p \ q \ r" - apply (eq p) - focus prems vars x p - apply (eq p) - focus prems vars x p - apply (eq p) - apply (reduce; intros) - done - done - done - - -section \Functoriality of functions\ - -Lemma (derive) ap: - assumes - "A: U i" "B: U i" - "x: A" "y: A" - "f: A \ B" - "p: x =\<^bsub>A\<^esub> y" - shows "f x = f y" - apply (eq p) - apply intro - done - -definition ap_i ("_[_]" [1000, 0]) - where [implicit]: "ap_i f p \ ap ? ? ? ? f p" - -translations "f[p]" \ "CONST ap A B x y f p" - -Lemma ap_refl [comps]: - assumes "f: A \ B" "x: A" "A: U i" "B: U i" - shows "f[refl x] \ refl (f x)" - unfolding ap_def by reduce - -Lemma (derive) ap_pathcomp: - assumes - "A: U i" "B: U i" - "x: A" "y: A" "z: A" - "f: A \ B" - "p: x =\<^bsub>A\<^esub> y" "q: y =\<^bsub>A\<^esub> z" - shows - "f[p \ q] = f[p] \ f[q]" - apply (eq p) - focus prems vars x p - apply (eq p) - apply (reduce; intro) - done - done - -Lemma (derive) ap_pathinv: - assumes - "A: U i" "B: U i" - "x: A" "y: A" - "f: A \ B" - "p: x =\<^bsub>A\<^esub> y" - shows "f[p\] = f[p]\" - by (eq p) (reduce; intro) - -text \The next two proofs currently use some low-level rewriting.\ - -Lemma (derive) ap_funcomp: - assumes - "A: U i" "B: U i" "C: U i" - "x: A" "y: A" - "f: A \ B" "g: B \ C" - "p: x =\<^bsub>A\<^esub> y" - shows "(g \ f)[p] = g[f[p]]" - apply (eq p) - apply (simp only: funcomp_apply_comp[symmetric]) - apply (reduce; intro) - done - -Lemma (derive) ap_id: - assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y" - shows "(id A)[p] = p" - apply (eq p) - apply (rewrite at "\ = _" id_comp[symmetric]) - apply (rewrite at "_ = \" id_comp[symmetric]) - apply (reduce; intros) - done - - -section \Transport\ - -Lemma (derive) transport: - assumes - "A: U i" - "\x. x: A \ P x: U i" - "x: A" "y: A" - "p: x =\<^bsub>A\<^esub> y" - shows "P x \ P y" - by (eq p) intro - -definition transport_i ("trans") - where [implicit]: "trans P p \ transport ? P ? ? p" - -translations "trans P p" \ "CONST transport A P x y p" - -Lemma transport_comp [comps]: - assumes - "a: A" - "A: U i" - "\x. x: A \ P x: U i" - shows "trans P (refl a) \ id (P a)" - unfolding transport_def by reduce - -\ \TODO: Build transport automation!\ - -Lemma use_transport: - assumes - "p: y =\<^bsub>A\<^esub> x" - "u: P x" - "x: A" "y: A" - "A: U i" - "\x. x: A \ P x: U i" - shows "trans P p\ u: P y" - by typechk - -Lemma (derive) transport_left_inv: - assumes - "A: U i" - "\x. x: A \ P x: U i" - "x: A" "y: A" - "p: x =\<^bsub>A\<^esub> y" - shows "(trans P p\) \ (trans P p) = id (P x)" - by (eq p) (reduce; intro) - -Lemma (derive) transport_right_inv: - assumes - "A: U i" - "\x. x: A \ P x: U i" - "x: A" "y: A" - "p: x =\<^bsub>A\<^esub> y" - shows "(trans P p) \ (trans P p\) = id (P y)" - by (eq p) (reduce; intros) - -Lemma (derive) transport_pathcomp: - assumes - "A: U i" - "\x. x: A \ P x: U i" - "x: A" "y: A" "z: A" - "u: P x" - "p: x =\<^bsub>A\<^esub> y" "q: y =\<^bsub>A\<^esub> z" - shows "trans P q (trans P p u) = trans P (p \ q) u" - apply (eq p) - focus prems vars x p - apply (eq p) - apply (reduce; intros) - done - done - -Lemma (derive) transport_compose_typefam: - assumes - "A: U i" "B: U i" - "\x. x: B \ P x: U i" - "f: A \ B" - "x: A" "y: A" - "p: x =\<^bsub>A\<^esub> y" - "u: P (f x)" - shows "trans (\x. P (f x)) p u = trans P f[p] u" - by (eq p) (reduce; intros) - -Lemma (derive) transport_function_family: - assumes - "A: U i" - "\x. x: A \ P x: U i" - "\x. x: A \ Q x: U i" - "f: \x: A. P x \ Q x" - "x: A" "y: A" - "u: P x" - "p: x =\<^bsub>A\<^esub> y" - shows "trans Q p ((f x) u) = (f y) (trans P p u)" - by (eq p) (reduce; intros) - -Lemma (derive) transport_const: - assumes - "A: U i" "B: U i" - "x: A" "y: A" - "p: x =\<^bsub>A\<^esub> y" - shows "\b: B. trans (\_. B) p b = b" - by (intro, eq p) (reduce; intro) - -definition transport_const_i ("trans'_const") - where [implicit]: "trans_const B p \ transport_const ? B ? ? p" - -translations "trans_const B p" \ "CONST transport_const A B x y p" - -Lemma transport_const_comp [comps]: - assumes - "x: A" "b: B" - "A: U i" "B: U i" - shows "trans_const B (refl x) b\ refl b" - unfolding transport_const_def by reduce - -Lemma (derive) pathlift: - assumes - "A: U i" - "\x. x: A \ P x: U i" - "x: A" "y: A" - "p: x =\<^bsub>A\<^esub> y" - "u: P x" - shows " = " - by (eq p) (reduce; intros) - -definition pathlift_i ("lift") - where [implicit]: "lift P p u \ pathlift ? P ? ? p u" - -translations "lift P p u" \ "CONST pathlift A P x y p u" - -Lemma pathlift_comp [comps]: - assumes - "u: P x" - "x: A" - "\x. x: A \ P x: U i" - "A: U i" - shows "lift P (refl x) u \ refl " - unfolding pathlift_def by reduce - -Lemma (derive) pathlift_fst: - assumes - "A: U i" - "\x. x: A \ P x: U i" - "x: A" "y: A" - "u: P x" - "p: x =\<^bsub>A\<^esub> y" - shows "fst[lift P p u] = p" - apply (eq p) - text \Some rewriting needed here:\ - \ vars x y - (*Here an automatic reordering tactic would be helpful*) - apply (rewrite at x in "x = y" fst_comp[symmetric]) - prefer 4 - apply (rewrite at y in "_ = y" fst_comp[symmetric]) - done - \ by reduce intro - done - - -section \Dependent paths\ - -Lemma (derive) apd: - assumes - "A: U i" - "\x. x: A \ P x: U i" - "f: \x: A. P x" - "x: A" "y: A" - "p: x =\<^bsub>A\<^esub> y" - shows "trans P p (f x) = f y" - by (eq p) (reduce; intros; typechk) - -definition apd_i ("apd") - where [implicit]: "apd f p \ Identity.apd ? ? f ? ? p" - -translations "apd f p" \ "CONST Identity.apd A P f x y p" - -Lemma dependent_map_comp [comps]: - assumes - "f: \x: A. P x" - "x: A" - "A: U i" - "\x. x: A \ P x: U i" - shows "apd f (refl x) \ refl (f x)" - unfolding apd_def by reduce - -Lemma (derive) apd_ap: - assumes - "A: U i" "B: U i" - "f: A \ B" - "x: A" "y: A" - "p: x =\<^bsub>A\<^esub> y" - shows "apd f p = trans_const B p (f x) \ f[p]" - by (eq p) (reduce; intro) - - -end diff --git a/spartan/theories/Spartan.thy b/spartan/theories/Spartan.thy deleted file mode 100644 index d235041..0000000 --- a/spartan/theories/Spartan.thy +++ /dev/null @@ -1,481 +0,0 @@ -text \Spartan type theory\ - -theory Spartan -imports - Pure - "HOL-Eisbach.Eisbach" - "HOL-Eisbach.Eisbach_Tools" -keywords - "Theorem" "Lemma" "Corollary" "Proposition" :: thy_goal_stmt and - "focus" "\" "\<^item>" "\<^enum>" "~" :: prf_script_goal % "proof" and - "derive" "prems" "vars":: quasi_command and - "print_coercions" :: thy_decl - -begin - - -section \Preamble\ - -declare [[eta_contract=false]] - - -section \Metatype setup\ - -typedecl o - - -section \Judgments\ - -judgment has_type :: \o \ o \ prop\ ("(2_:/ _)" 999) - - -section \Universes\ - -typedecl lvl \ \Universe levels\ - -axiomatization - O :: \lvl\ and - S :: \lvl \ lvl\ and - lt :: \lvl \ lvl \ prop\ (infix "<" 900) - where - O_min: "O < S i" and - lt_S: "i < S i" and - lt_trans: "i < j \ j < k \ i < k" - -axiomatization U :: \lvl \ o\ where - U_hierarchy: "i < j \ U i: U j" and - U_cumulative: "A: U i \ i < j \ A: U j" - -lemma U_in_U: - "U i: U (S i)" - by (rule U_hierarchy, rule lt_S) - -lemma lift_universe: - "A: U i \ A: U (S i)" - by (erule U_cumulative, rule lt_S) - - -section \\-type\ - -axiomatization - Pi :: \o \ (o \ o) \ o\ and - lam :: \o \ (o \ o) \ o\ and - app :: \o \ o \ o\ ("(1_ `_)" [120, 121] 120) - -syntax - "_Pi" :: \idt \ o \ o \ o\ ("(2\_: _./ _)" 30) - "_lam" :: \pttrns \ o \ o \ o\ ("(2\_: _./ _)" 30) - "_lam2" :: \pttrns \ o \ o \ o\ -translations - "\x: A. B" \ "CONST Pi A (\x. B)" - "\x xs: A. b" \ "CONST lam A (\x. _lam2 xs A b)" - "_lam2 x A b" \ "\x: A. b" - "\x: A. b" \ "CONST lam A (\x. b)" - -abbreviation Fn (infixr "\" 40) where "A \ B \ \_: A. B" - -axiomatization where - PiF: "\\x. x: A \ B x: U i; A: U i\ \ \x: A. B x: U i" and - - PiI: "\\x. x: A \ b x: B x; A: U i\ \ \x: A. b x: \x: A. B x" and - - PiE: "\f: \x: A. B x; a: A\ \ f `a: B a" and - - beta: "\a: A; \x. x: A \ b x: B x\ \ (\x: A. b x) `a \ b a" and - - eta: "f: \x: A. B x \ \x: A. f `x \ f" and - - Pi_cong: "\ - A: U i; - \x. x: A \ B x: U i; - \x. x: A \ B' x: U i; - \x. x: A \ B x \ B' x - \ \ \x: A. B x \ \x: A. B' x" and - - lam_cong: "\\x. x: A \ b x \ c x; A: U i\ \ \x: A. b x \ \x: A. c x" - - -section \\-type\ - -axiomatization - Sig :: \o \ (o \ o) \ o\ and - pair :: \o \ o \ o\ ("(2<_,/ _>)") and - SigInd :: \o \ (o \ o) \ (o \ o) \ (o \ o \ o) \ o \ o\ - -syntax "_Sum" :: \idt \ o \ o \ o\ ("(2\_: _./ _)" 20) - -translations "\x: A. B" \ "CONST Sig A (\x. B)" - -abbreviation Prod (infixl "\" 50) - where "A \ B \ \_: A. B" - -axiomatization where - SigF: "\\x. x: A \ B x: U i; A: U i\ \ \x: A. B x: U i" and - - SigI: "\\x. x: A \ B x: U i; a: A; b: B a\ \ : \x: A. B x" and - - SigE: "\ - p: \x: A. B x; - A: U i; - \x. x : A \ B x: U i; - \p. p: \x: A. B x \ C p: U i; - \x y. \x: A; y: B x\ \ f x y: C - \ \ SigInd A (\x. B x) (\p. C p) f p: C p" and - - Sig_comp: "\ - a: A; - b: B a; - \x. x: A \ B x: U i; - \p. p: \x: A. B x \ C p: U i; - \x y. \x: A; y: B x\ \ f x y: C - \ \ SigInd A (\x. B x) (\p. C p) f \ f a b" and - - Sig_cong: "\ - \x. x: A \ B x \ B' x; - A: U i; - \x. x : A \ B x: U i; - \x. x : A \ B' x: U i - \ \ \x: A. B x \ \x: A. B' x" - - -section \Proof commands\ - -named_theorems typechk - -ML_file \../lib/lib.ML\ -ML_file \../lib/goals.ML\ -ML_file \../lib/focus.ML\ - - -section \Congruence automation\ - -(*Potential to be retired*) -ML_file \../lib/congruence.ML\ - - -section \Methods\ - -ML_file \../lib/elimination.ML\ \ \declares the [elims] attribute\ - -named_theorems intros and comps -lemmas - [intros] = PiF PiI SigF SigI and - [elims "?f"] = PiE and - [elims "?p"] = SigE and - [comps] = beta Sig_comp and - [cong] = Pi_cong lam_cong Sig_cong - -ML_file \../lib/tactics.ML\ - -method_setup assumptions = - \Scan.succeed (fn ctxt => SIMPLE_METHOD ( - CHANGED (TRYALL (assumptions_tac ctxt))))\ - -method_setup known = - \Scan.succeed (fn ctxt => SIMPLE_METHOD ( - CHANGED (TRYALL (known_tac ctxt))))\ - -method_setup intro = - \Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (intro_tac ctxt)))\ - -method_setup intros = - \Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (intros_tac ctxt)))\ - -method_setup old_elim = - \Scan.option Args.term >> (fn tm => fn ctxt => - SIMPLE_METHOD' (SIDE_CONDS (old_elims_tac tm ctxt) ctxt))\ - -method_setup elim = - \Scan.repeat Args.term >> (fn tms => fn ctxt => - CONTEXT_METHOD (K (elim_context_tac tms ctxt 1)))\ - -method elims = elim+ - -(*This could possibly use additional simplification hints via a simp: modifier*) -method_setup typechk = - \Scan.succeed (fn ctxt => SIMPLE_METHOD' ( - SIDE_CONDS (typechk_tac ctxt) ctxt)) - (* CHANGED (ALLGOALS (TRY o typechk_tac ctxt)))) *)\ - -method_setup rule = - \Attrib.thms >> (fn ths => fn ctxt => - SIMPLE_METHOD (HEADGOAL (SIDE_CONDS (rule_tac ths ctxt) ctxt)))\ - -method_setup dest = - \Scan.lift (Scan.option (Args.parens Parse.int)) -- Attrib.thms - >> (fn (opt_n, ths) => fn ctxt => - SIMPLE_METHOD (HEADGOAL (SIDE_CONDS (dest_tac opt_n ths ctxt) ctxt)))\ - -subsection \Reflexivity\ - -named_theorems refl -method refl = (rule refl) - -subsection \Trivial proofs modulo typechecking\ - -method_setup this = - \Scan.succeed (fn ctxt => METHOD ( - EVERY o map (HEADGOAL o - (fn ths => SIDE_CONDS (resolve_tac ctxt ths) ctxt) o - single) - ))\ - -subsection \Rewriting\ - -\ \\subst\ method\ -ML_file "~~/src/Tools/misc_legacy.ML" -ML_file "~~/src/Tools/IsaPlanner/isand.ML" -ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML" -ML_file "~~/src/Tools/IsaPlanner/zipper.ML" -ML_file "../lib/eqsubst.ML" - -\ \\rewrite\ method\ -consts rewrite_HOLE :: "'a::{}" ("\") - -lemma eta_expand: - fixes f :: "'a::{} \ 'b::{}" - shows "f \ \x. f x" . - -lemma rewr_imp: - assumes "PROP A \ PROP B" - shows "(PROP A \ PROP C) \ (PROP B \ PROP C)" - apply (rule Pure.equal_intr_rule) - apply (drule equal_elim_rule2[OF assms]; assumption) - apply (drule equal_elim_rule1[OF assms]; assumption) - done - -lemma imp_cong_eq: - "(PROP A \ (PROP B \ PROP C) \ (PROP B' \ PROP C')) \ - ((PROP B \ PROP A \ PROP C) \ (PROP B' \ PROP A \ PROP C'))" - apply (Pure.intro Pure.equal_intr_rule) - apply (drule (1) cut_rl; drule Pure.equal_elim_rule1 Pure.equal_elim_rule2; - assumption)+ - apply (drule Pure.equal_elim_rule1 Pure.equal_elim_rule2; assumption)+ - done - -ML_file \~~/src/HOL/Library/cconv.ML\ -ML_file \../lib/rewrite.ML\ - -\ \\reduce\ computes terms via judgmental equalities\ -setup \map_theory_simpset (fn ctxt => ctxt addSolver (mk_solver "" typechk_tac))\ - -method reduce uses add = (simp add: comps add | subst comps)+ - - -section \Implicit notations\ - -text \ - \?\ is used to mark implicit arguments in definitions, while \{}\ is expanded - immediately for elaboration in statements. -\ - -consts - iarg :: \'a\ ("?") - hole :: \'b\ ("{}") - -ML_file \../lib/implicits.ML\ - -attribute_setup implicit = \Scan.succeed Implicits.implicit_defs_attr\ - -ML \ -val _ = Context.>> - (Syntax_Phases.term_check 1 "" (fn ctxt => map (Implicits.make_holes ctxt))) -\ - -text \Automatically insert inhabitation judgments where needed:\ - -consts inhabited :: \o \ prop\ ("(_)") -translations "CONST inhabited A" \ "CONST has_type {} A" - - -section \Lambda coercion\ - -\ \Coerce object lambdas to meta-lambdas\ -abbreviation (input) lambda :: \o \ o \ o\ - where "lambda f \ \x. f `x" - -ML_file \~~/src/Tools/subtyping.ML\ -declare [[coercion_enabled, coercion lambda]] - -translations "f x" \ "f `x" - - -section \Functions\ - -lemma eta_exp: - assumes "f: \x: A. B x" - shows "f \ \x: A. f x" - by (rule eta[symmetric]) - -lemma lift_universe_codomain: - assumes "A: U i" "f: A \ U j" - shows "f: A \ U (S j)" - apply (sub eta_exp) - apply known - apply (Pure.rule intros; rule lift_universe) - done - -subsection \Function composition\ - -definition "funcomp A g f \ \x: A. g `(f `x)" - -syntax - "_funcomp" :: \o \ o \ o \ o\ ("(2_ \\<^bsub>_\<^esub>/ _)" [111, 0, 110] 110) -translations - "g \\<^bsub>A\<^esub> f" \ "CONST funcomp A g f" - -lemma funcompI [typechk]: - assumes - "A: U i" - "B: U i" - "\x. x: B \ C x: U i" - "f: A \ B" - "g: \x: B. C x" - shows - "g \\<^bsub>A\<^esub> f: \x: A. C (f x)" - unfolding funcomp_def by typechk - -lemma funcomp_assoc [comps]: - assumes - "f: A \ B" - "g: B \ C" - "h: \x: C. D x" - "A: U i" - shows - "(h \\<^bsub>B\<^esub> g) \\<^bsub>A\<^esub> f \ h \\<^bsub>A\<^esub> g \\<^bsub>A\<^esub> f" - unfolding funcomp_def by reduce - -lemma funcomp_lambda_comp [comps]: - assumes - "A: U i" - "\x. x: A \ b x: B" - "\x. x: B \ c x: C x" - shows - "(\x: B. c x) \\<^bsub>A\<^esub> (\x: A. b x) \ \x: A. c (b x)" - unfolding funcomp_def by reduce - -lemma funcomp_apply_comp [comps]: - assumes - "f: A \ B" "g: \x: B. C x" - "x: A" - "A: U i" "B: U i" - "\x y. x: B \ C x: U i" - shows "(g \\<^bsub>A\<^esub> f) x \ g (f x)" - unfolding funcomp_def by reduce - -text \Notation:\ - -definition funcomp_i (infixr "\" 120) - where [implicit]: "funcomp_i g f \ g \\<^bsub>?\<^esub> f" - -translations "g \ f" \ "g \\<^bsub>A\<^esub> f" - -subsection \Identity function\ - -abbreviation id where "id A \ \x: A. x" - -lemma - id_type[typechk]: "A: U i \ id A: A \ A" and - id_comp [comps]: "x: A \ (id A) x \ x" \ \for the occasional manual rewrite\ - by reduce - -lemma id_left [comps]: - assumes "f: A \ B" "A: U i" "B: U i" - shows "(id B) \\<^bsub>A\<^esub> f \ f" - by (subst eta_exp[of f]) (reduce, rule eta) - -lemma id_right [comps]: - assumes "f: A \ B" "A: U i" "B: U i" - shows "f \\<^bsub>A\<^esub> (id A) \ f" - by (subst eta_exp[of f]) (reduce, rule eta) - -lemma id_U [typechk]: - "id (U i): U i \ U i" - by typechk (fact U_in_U) - - -section \Pairs\ - -definition "fst A B \ \p: \x: A. B x. SigInd A B (\_. A) (\x y. x) p" -definition "snd A B \ \p: \x: A. B x. SigInd A B (\p. B (fst A B p)) (\x y. y) p" - -lemma fst_type [typechk]: - assumes "A: U i" "\x. x: A \ B x: U i" - shows "fst A B: (\x: A. B x) \ A" - unfolding fst_def by typechk - -lemma fst_comp [comps]: - assumes - "a: A" - "b: B a" - "A: U i" - "\x. x: A \ B x: U i" - shows "fst A B \ a" - unfolding fst_def by reduce - -lemma snd_type [typechk]: - assumes "A: U i" "\x. x: A \ B x: U i" - shows "snd A B: \p: \x: A. B x. B (fst A B p)" - unfolding snd_def by typechk reduce - -lemma snd_comp [comps]: - assumes "a: A" "b: B a" "A: U i" "\x. x: A \ B x: U i" - shows "snd A B \ b" - unfolding snd_def by reduce - -subsection \Notation\ - -definition fst_i ("fst") - where [implicit]: "fst \ Spartan.fst ? ?" - -definition snd_i ("snd") - where [implicit]: "snd \ Spartan.snd ? ?" - -translations - "fst" \ "CONST Spartan.fst A B" - "snd" \ "CONST Spartan.snd A B" - -subsection \Projections\ - -Lemma fst [typechk]: - assumes - "p: \x: A. B x" - "A: U i" "\x. x: A \ B x: U i" - shows "fst p: A" - by typechk - -Lemma snd [typechk]: - assumes - "p: \x: A. B x" - "A: U i" "\x. x: A \ B x: U i" - shows "snd p: B (fst p)" - by typechk - -method fst for p::o = rule fst[of p] -method snd for p::o = rule snd[of p] - -subsection \Properties of \\ - -Lemma (derive) Sig_dist_exp: - assumes - "p: \x: A. B x \ C x" - "A: U i" - "\x. x: A \ B x: U i" - "\x. x: A \ C x: U i" - shows "(\x: A. B x) \ (\x: A. C x)" - apply (elim p) - focus vars x y - apply intro - \ apply intro - apply assumption - apply (fst y) - done - \ apply intro - apply assumption - apply (snd y) - done - done - done - - -end -- cgit v1.2.3