From aff3d43d9865e7b8d082f0c239d2c73eee1fb291 Mon Sep 17 00:00:00 2001 From: Josh Chen Date: Thu, 21 Jan 2021 00:52:13 +0000 Subject: renamings --- hott/Nat.thy | 60 ++++++++++++++++++++++++++++++------------------------------ 1 file changed, 30 insertions(+), 30 deletions(-) (limited to 'hott/Nat.thy') diff --git a/hott/Nat.thy b/hott/Nat.thy index 1aa7932..33a5d0a 100644 --- a/hott/Nat.thy +++ b/hott/Nat.thy @@ -70,27 +70,27 @@ Lemma add_type [type]: Lemma add_zero [comp]: assumes "m: Nat" shows "m + 0 \ m" - unfolding add_def by reduce + unfolding add_def by compute Lemma add_suc [comp]: assumes "m: Nat" "n: Nat" shows "m + suc n \ suc (m + n)" - unfolding add_def by reduce + unfolding add_def by compute Lemma (def) zero_add: assumes "n: Nat" shows "0 + n = n" apply (elim n) - \<^item> by (reduce; intro) - \<^item> vars _ ih by reduce (eq ih; refl) + \<^item> by (compute; intro) + \<^item> vars _ ih by compute (eq ih; refl) done Lemma (def) suc_add: assumes "m: Nat" "n: Nat" shows "suc m + n = suc (m + n)" apply (elim n) - \<^item> by reduce refl - \<^item> vars _ ih by reduce (eq ih; refl) + \<^item> by compute refl + \<^item> vars _ ih by compute (eq ih; refl) done Lemma (def) suc_eq: @@ -102,19 +102,19 @@ Lemma (def) add_assoc: assumes "l: Nat" "m: Nat" "n: Nat" shows "l + (m + n) = l + m+ n" apply (elim n) - \<^item> by reduce intro - \<^item> vars _ ih by reduce (eq ih; refl) + \<^item> by compute intro + \<^item> vars _ ih by compute (eq ih; refl) done Lemma (def) add_comm: assumes "m: Nat" "n: Nat" shows "m + n = n + m" apply (elim n) - \<^item> by (reduce; rule zero_add[symmetric]) + \<^item> by (compute; rule zero_add[symmetric]) \<^item> vars n ih - proof reduce + proof compute have "suc (m + n) = suc (n + m)" by (eq ih) refl - also have ".. = suc n + m" by (transport eq: suc_add) refl + also have ".. = suc n + m" by (rewr eq: suc_add) refl finally show "?" by this qed done @@ -131,27 +131,27 @@ Lemma mul_type [type]: Lemma mul_zero [comp]: assumes "n: Nat" shows "n * 0 \ 0" - unfolding mul_def by reduce + unfolding mul_def by compute Lemma mul_one [comp]: assumes "n: Nat" shows "n * 1 \ n" - unfolding mul_def by reduce + unfolding mul_def by compute Lemma mul_suc [comp]: assumes "m: Nat" "n: Nat" shows "m * suc n \ m + m * n" - unfolding mul_def by reduce + unfolding mul_def by compute Lemma (def) zero_mul: assumes "n: Nat" shows "0 * n = 0" apply (elim n) - \<^item> by reduce refl + \<^item> by compute refl \<^item> vars n ih - proof reduce + proof compute have "0 + 0 * n = 0 + 0 " by (eq ih) refl - also have ".. = 0" by reduce refl + also have ".. = 0" by compute refl finally show "?" by this qed done @@ -160,11 +160,11 @@ Lemma (def) suc_mul: assumes "m: Nat" "n: Nat" shows "suc m * n = m * n + n" apply (elim n) - \<^item> by reduce refl + \<^item> by compute refl \<^item> vars n ih - proof (reduce, transport eq: \ih:_\) + proof (compute, rewr eq: \ih:_\) have "suc m + (m * n + n) = suc (m + ?)" by (rule suc_add) - also have ".. = suc (m + m * n + n)" by (transport eq: add_assoc) refl + also have ".. = suc (m + m * n + n)" by (rewr eq: add_assoc) refl finally show "?" by this qed done @@ -173,13 +173,13 @@ Lemma (def) mul_dist_add: assumes "l: Nat" "m: Nat" "n: Nat" shows "l * (m + n) = l * m + l * n" apply (elim n) - \<^item> by reduce refl + \<^item> by compute refl \<^item> vars n ih - proof reduce + proof compute have "l + l * (m + n) = l + (l * m + l * n)" by (eq ih) refl also have ".. = l + l * m + l * n" by (rule add_assoc) - also have ".. = l * m + l + l * n" by (transport eq: add_comm) refl - also have ".. = l * m + (l + l * n)" by (transport eq: add_assoc) refl + also have ".. = l * m + l + l * n" by (rewr eq: add_comm) refl + also have ".. = l * m + (l + l * n)" by (rewr eq: add_assoc) refl finally show "?" by this qed done @@ -188,11 +188,11 @@ Lemma (def) mul_assoc: assumes "l: Nat" "m: Nat" "n: Nat" shows "l * (m * n) = l * m * n" apply (elim n) - \<^item> by reduce refl + \<^item> by compute refl \<^item> vars n ih - proof reduce + proof compute have "l * (m + m * n) = l * m + l * (m * n)" by (rule mul_dist_add) - also have ".. = l * m + l * m * n" by (transport eq: \ih:_\) refl + also have ".. = l * m + l * m * n" by (rewr eq: \ih:_\) refl finally show "?" by this qed done @@ -201,12 +201,12 @@ Lemma (def) mul_comm: assumes "m: Nat" "n: Nat" shows "m * n = n * m" apply (elim n) - \<^item> by reduce (transport eq: zero_mul, refl) + \<^item> by compute (rewr eq: zero_mul, refl) \<^item> vars n ih - proof (reduce, rule pathinv) + proof (compute, rule pathinv) have "suc n * m = n * m + m" by (rule suc_mul) also have ".. = m + m * n" - by (transport eq: \ih:_\, transport eq: add_comm) refl + by (rewr eq: \ih:_\, rewr eq: add_comm) refl finally show "?" by this qed done -- cgit v1.2.3