From 7a89ec1e72f61179767c6488177c6d12e69388c5 Mon Sep 17 00:00:00 2001 From: Josh Chen Date: Sun, 12 Aug 2018 13:04:16 +0200 Subject: Commit before testing polymorphic equality eliminator --- Prod.thy | 22 ++++++++++++---------- 1 file changed, 12 insertions(+), 10 deletions(-) (limited to 'Prod.thy') diff --git a/Prod.thy b/Prod.thy index 01cd006..5391943 100644 --- a/Prod.thy +++ b/Prod.thy @@ -41,20 +41,21 @@ abbreviation Function :: "[Term, Term] \ Term" (infixr "\Type rules\ axiomatization where - Prod_form: "\i A B. \A: U(i); B: A \ U(i)\ \ \x:A. B(x): U(i)" + Prod_form: "\A: U(i); B: A \ U(i)\ \ \x:A. B(x): U(i)" and - Prod_intro: "\i A B b. \A: U(i); B: A \ U(i); \x. x: A \ b(x): B(x)\ \ \<^bold>\x:A. b(x): \x:A. B(x)" + Prod_intro: "\A: U(i); \x. x: A \ b(x): B(x)\ \ \<^bold>\x:A. b(x): \x:A. B(x)" and - Prod_elim: "\A B f a. \f: \x:A. B(x); a: A\ \ f`a: B(a)" + Prod_elim: "\f: \x:A. B(x); a: A\ \ f`a: B(a)" and - Prod_comp: "\i A B b a. \A: U(i); B: A \ U(i); \x. x: A \ b(x): B(x); a: A\ \ (\<^bold>\x:A. b(x))`a \ b(a)" + Prod_comp: "\a: A; \x. x: A \ b(x): B(x)\ \ (\<^bold>\x:A. b(x))`a \ b(a)" and - Prod_uniq: "\A B f. f : \x:A. B(x) \ \<^bold>\x:A. (f`x) \ f" + Prod_uniq: "f : \x:A. B(x) \ \<^bold>\x:A. (f`x) \ f" text " Note that the syntax \\<^bold>\\ (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \
2.5.2 of the Isabelle/Isar Implementation). " +(* text " In addition to the usual type rules, it is a meta-theorem (*PROVE THIS!*) that whenever \\x:A. B x: U(i)\ is derivable from some set of premises \, then so are \A: U(i)\ and \B: A \ U(i)\. @@ -62,14 +63,15 @@ text " " axiomatization where - Prod_form_cond1: "\i A B. (\x:A. B(x): U(i)) \ A: U(i)" + Prod_form_cond1: "(\x:A. B(x): U(i)) \ A: U(i)" and - Prod_form_cond2: "\i A B. (\x:A. B(x): U(i)) \ B: A \ U(i)" + Prod_form_cond2: "(\x:A. B(x): U(i)) \ B: A \ U(i)" +*) text "Set up the standard reasoner to use the type rules:" lemmas Prod_rules = Prod_form Prod_intro Prod_elim Prod_comp Prod_uniq -lemmas Prod_form_conds [intro (*elim, wellform*)] = Prod_form_cond1 Prod_form_cond2 +(*lemmas Prod_form_conds [intro (*elim, wellform*)] = Prod_form_cond1 Prod_form_cond2*) lemmas Prod_comps [comp] = Prod_comp Prod_uniq @@ -84,9 +86,9 @@ where and Unit_intro: "\: \" and - Unit_elim: "\i C c a. \C: \ \ U(i); c: C(\); a: \\ \ ind\<^sub>\(c)(a) : C(a)" + Unit_elim: "\C: \ \ U(i); c: C(\); a: \\ \ ind\<^sub>\(c)(a) : C(a)" and - Unit_comp: "\i C c. \C: \ \ U(i); c: C(\)\ \ ind\<^sub>\(c)(\) \ c" + Unit_comp: "\C: \ \ U(i); c: C(\)\ \ ind\<^sub>\(c)(\) \ c" lemmas Unit_rules [intro] = Unit_form Unit_intro Unit_elim Unit_comp lemmas Unit_comps [comp] = Unit_comp -- cgit v1.2.3