From 14a5e50ab3ed54767a4432333642e9069ffa9109 Mon Sep 17 00:00:00 2001 From: Josh Chen Date: Sat, 30 Jun 2018 19:21:58 +0200 Subject: Proving path composition. Need to set up the Simplifier to simplify application of object-lambdas to arguments. --- EqualProps.thy | 38 ++++++++++++++++++++++++++++---------- 1 file changed, 28 insertions(+), 10 deletions(-) (limited to 'EqualProps.thy') diff --git a/EqualProps.thy b/EqualProps.thy index 3b0de79..b691133 100644 --- a/EqualProps.thy +++ b/EqualProps.thy @@ -12,10 +12,11 @@ theory EqualProps Prod begin + section \Symmetry / Path inverse\ definition inv :: "[Term, Term, Term] \ Term" ("(1inv[_,/ _,/ _])") - where "inv[A,x,y] \ \<^bold>\p: (x =\<^sub>A y). indEqual[A] (\x y _. y =\<^sub>A x) (\x. refl(x)) x y p" + where "inv[A,x,y] \ \<^bold>\p:x =\<^sub>A y. indEqual[A] (\x y _. y =\<^sub>A x) (\x. refl(x)) x y p" lemma inv_type: assumes "p : x =\<^sub>A y" @@ -57,21 +58,38 @@ proof - finally show "inv[A,a,a]`refl(a) \ refl(a)" . qed + section \Transitivity / Path composition\ -\ \"Raw" composition function\ -definition compose' :: "Term \ Term" ("(1compose''[_])") - where "compose'[A] \ - indEqual[A] (\x y _. \z:A. \q: y =\<^sub>A z. x =\<^sub>A z) (indEqual[A](\x z _. x =\<^sub>A z) (\<^bold>\x:A. refl(x)))" +text "``Raw'' composition function, of type \\x,y:A. x =\<^sub>A y \ (\z:A. y =\<^sub>A z \ x =\<^sub>A z)\." + +definition rcompose :: "Term \ Term" ("(1rcompose[_])") + where "rcompose[A] \ \<^bold>\x:A. \<^bold>\y:A. \<^bold>\p:x =\<^sub>A y. indEqual[A] + (\x y _. \z:A. y =\<^sub>A z \ x =\<^sub>A z) + (\x. \<^bold>\z:A. \<^bold>\p:x =\<^sub>A z. indEqual[A](\x z _. x =\<^sub>A z) (\x. refl(x)) x z p) + x y p" + +text "``Natural'' composition function abbreviation, effectively equivalent to a function of type \\x,y,z:A. x =\<^sub>A y \ y =\<^sub>A z \ x =\<^sub>A z\." -\ \"Natural" composition function\ abbreviation compose :: "[Term, Term, Term, Term] \ Term" ("(1compose[_,/ _,/ _,/ _])") - where "compose[A,x,y,z] \ \<^bold>\p:x =\<^sub>A y. \<^bold>\q:y =\<^sub>A z. compose'[A]`x`y`p`z`q" + where "compose[A,x,y,z] \ \<^bold>\p:x =\<^sub>A y. \<^bold>\q:y =\<^sub>A z. rcompose[A]`x`y`p`z`q" + -(**** GOOD CANDIDATE FOR AUTOMATION ****) lemma compose_comp: assumes "a : A" - shows "compose[A,a,a,a]`refl(a)`refl(a) \ refl(a)" using assms Equal_intro[OF assms] unfolding compose'_def by simp + shows "compose[A,a,a,a]`refl(a)`refl(a) \ refl(a)" + +proof (unfold rcompose_def) + have "compose[A,a,a,a]`refl(a) \ \<^bold>\q:a =\<^sub>A a. rcompose[A]`a`a`refl(a)`a`q" + proof standard+ (*TODO: Set up the Simplifier to handle this proof at some point.*) + fix p q assume "p : a =\<^sub>A a" and "q : a =\<^sub>A a" + then show "rcompose[A]`a`a`p`a`q : a =\<^sub>A a" + proof (unfold rcompose_def) + have "(\<^bold>\x:A. \<^bold>\y:A. \<^bold>\p:x =\<^sub>A y. (indEqual[A] + (\x y _. \z:A. y =[A] z \ x =[A] z) + (\x. \<^bold>\z:A. \<^bold>\q:x =\<^sub>A z. (indEqual[A] (\x z _. x =\<^sub>A z) refl x z q)) + x y p))`a`a`p`a`q \ ..." (*Okay really need to set up the Simplifier...*) +oops text "The above proof is a good candidate for proof automation; in particular we would like the system to be able to automatically find the conditions of the \using\ clause in the proof. This would likely involve something like: @@ -81,7 +99,7 @@ This would likely involve something like: lemmas Equal_simps [simp] = inv_comp compose_comp -subsubsection \Pretty printing\ +section \Pretty printing\ abbreviation inv_pretty :: "[Term, Term, Term, Term] \ Term" ("(1_\<^sup>-\<^sup>1[_, _, _])" 500) where "p\<^sup>-\<^sup>1[A,x,y] \ inv[A,x,y]`p" -- cgit v1.2.3