From 5161a0356d8752f3b1b4f4385e799bca92718814 Mon Sep 17 00:00:00 2001 From: Josh Chen Date: Sun, 17 Jun 2018 00:48:01 +0200 Subject: Decided on a new proper scheme for type rules using the idea of implicit well-formed contexts and guaranteed conclusion well-formedness. Product type rules now follow this scheme. --- HoTT_Theorems.thy | 43 ++++++++++++++++++++----------------------- Prod.thy | 2 +- scratch.thy | 24 ++++++++++++++++++++++++ 3 files changed, 45 insertions(+), 24 deletions(-) create mode 100644 scratch.thy diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy index ab5374d..871c553 100644 --- a/HoTT_Theorems.thy +++ b/HoTT_Theorems.thy @@ -16,42 +16,39 @@ section \\ type\ subsection \Typing functions\ -text "Declaring \Prod_intro\ with the \intro\ attribute (in HoTT.thy) enables \standard\ to prove the following." +text "Declaring \Prod_intro\ with the \intro\ attribute (in HoTT.thy) enables \standard\ to prove the following." -lemma "\<^bold>\x:A. x : A\A" .. +proposition assumes "A : U" shows "\<^bold>\x:A. x : A\A" using assms .. -proposition "A \ B \ \<^bold>\x:A. x : B\A" +proposition + assumes "A : U" and "A \ B" + shows "\<^bold>\x:A. x : B\A" proof - - assume "A \ B" - then have *: "A\A \ B\A" by simp - - have "\<^bold>\x:A. x : A\A" .. - with * show "\<^bold>\x:A. x : B\A" by simp + have "A\A \ B\A" using assms by simp + moreover have "\<^bold>\x:A. x : A\A" using assms(1) .. + ultimately show "\<^bold>\x:A. x : B\A" by simp qed -proposition "\<^bold>\x:A. \<^bold>\y:B. x : A\B\A" +proposition + assumes "A : U" and "B : U" + shows "\<^bold>\x:A. \<^bold>\y:B. x : A\B\A" proof - fix a - assume "a : A" - then show "\<^bold>\y:B. a : B \ A" .. - - ML_val \@{context} |> Variable.names_of\ - -qed + fix x + assume "x : A" + with assms(2) show "\<^bold>\y:B. x : B\A" .. +qed (rule assms) subsection \Function application\ -proposition "a : A \ (\<^bold>\x:A. x)`a \ a" by simp +proposition assumes "a : A" shows "(\<^bold>\x:A. x)`a \ a" using assms by simp text "Currying:" -term "lambda A (\x. \<^bold>\y:B(x). y)" - -thm Prod_comp[where ?B = "\x. \y:B(x). B(x)"] - -lemma "a : A \ (\<^bold>\x:A. \<^bold>\y:B(x). y)`a \ \<^bold>\y:B(a). y" -proof (rule Prod_comp[where ?B = "\x. \y:B(x). B(x)"]) +lemma + assumes "a : A" + shows "(\<^bold>\x:A. \<^bold>\y:B(x). y)`a \ \<^bold>\y:B(a). y" +proof show "\x. a : A \ x : A \ \<^bold>\y:B x. y : B x \ B x" lemma "\a : A; b : B\ \ (\<^bold>\x:A. \<^bold>\y:B(x). y)`a`b \ b" by simp diff --git a/Prod.thy b/Prod.thy index 113998e..7cce7f0 100644 --- a/Prod.thy +++ b/Prod.thy @@ -33,7 +33,7 @@ translations axiomatization where Prod_form [intro]: "\A B. \A : U; B : A \ U\ \ \x:A. B x : U" and - Prod_intro [intro]: "\A B b. (\x. x : A \ b x : B x) \ \<^bold>\x:A. b x : \x:A. B x" + Prod_intro [intro]: "\A B b. \A : U; \x. x : A \ b x : B x\ \ \<^bold>\x:A. b x : \x:A. B x" and Prod_elim [elim]: "\A B f a. \f : \x:A. B x; a : A\ \ f`a : B a" and diff --git a/scratch.thy b/scratch.thy new file mode 100644 index 0000000..331b607 --- /dev/null +++ b/scratch.thy @@ -0,0 +1,24 @@ +theory scratch + imports IFOL + +begin + +lemma disj_swap: "P \ Q \ Q \ P" +apply (erule disjE) (* Compare with the less useful \rule disjE\ *) + apply (rule disjI2) + apply assumption +apply (rule disjI1) +apply assumption +done + +lemma imp_uncurry: "P \ (Q \ R) \ P \ Q \ R" +apply (rule impI) +apply (erule conjE) +apply (drule mp) +apply assumption +apply (drule mp) +apply assumption +apply assumption +done + +end \ No newline at end of file -- cgit v1.2.3