From 28e91f960d7b41f3658a2736f7d87ba5e79f87f6 Mon Sep 17 00:00:00 2001 From: Josh Chen Date: Mon, 15 Jun 2020 11:56:28 +0200 Subject: remove old folder --- spartan/data/List.thy | 192 -------------------------------------------- spartan/data/Maybe.thy | 76 ------------------ spartan/data/More_Types.thy | 104 ------------------------ 3 files changed, 372 deletions(-) delete mode 100644 spartan/data/List.thy delete mode 100644 spartan/data/Maybe.thy delete mode 100644 spartan/data/More_Types.thy diff --git a/spartan/data/List.thy b/spartan/data/List.thy deleted file mode 100644 index 1798a23..0000000 --- a/spartan/data/List.thy +++ /dev/null @@ -1,192 +0,0 @@ -chapter \Lists\ - -theory List -imports Maybe - -begin - -(*TODO: Inductive type and recursive function definitions. The ad-hoc - axiomatization below should be subsumed once general inductive types are - properly implemented.*) - -axiomatization - List :: \o \ o\ and - nil :: \o \ o\ and - cons :: \o \ o \ o \ o\ and - ListInd :: \o \ (o \ o) \ o \ (o \ o \ o \ o) \ o \ o\ -where - ListF: "A: U i \ List A: U i" and - - List_nil: "A: U i \ nil A: List A" and - - List_cons: "\x: A; xs: List A\ \ cons A x xs: List A" and - - ListE: "\ - xs: List A; - c\<^sub>0: C (nil A); - \x xs rec. \x: A; xs: List A; rec: C xs\ \ f x xs rec: C (cons A x xs); - \xs. xs: List A \ C xs: U i - \ \ ListInd A (\xs. C xs) c\<^sub>0 (\x xs rec. f x xs rec) xs: C xs" and - - List_comp_nil: "\ - c\<^sub>0: C (nil A); - \x xs rec. \x: A; xs: List A; rec: C xs\ \ f x xs rec: C (cons A x xs); - \xs. xs: List A \ C xs: U i - \ \ ListInd A (\xs. C xs) c\<^sub>0 (\x xs rec. f x xs rec) (nil A) \ c\<^sub>0" and - - List_comp_cons: "\ - xs: List A; - c\<^sub>0: C (nil A); - \x xs rec. \x: A; xs: List A; rec: C xs\ \ f x xs rec: C (cons A x xs); - \xs. xs: List A \ C xs: U i - \ \ - ListInd A (\xs. C xs) c\<^sub>0 (\x xs rec. f x xs rec) (cons A x xs) \ - f x xs (ListInd A (\xs. C xs) c\<^sub>0 (\x xs rec. f x xs rec) xs)" - -lemmas - [intros] = ListF List_nil List_cons and - [elims "?xs"] = ListE and - [comps] = List_comp_nil List_comp_cons - -abbreviation "ListRec A C \ ListInd A (\_. C)" - -Lemma (derive) ListCase: - assumes - "xs: List A" and - nil_case: "c\<^sub>0: C (nil A)" and - cons_case: "\x xs. \x: A; xs: List A\ \ f x xs: C (cons A x xs)" and - "\xs. xs: List A \ C xs: U i" - shows "?List_cases A (\xs. C xs) c\<^sub>0 (\x xs. f x xs) xs: C xs" - by (elim xs) (fact nil_case, rule cons_case) - -lemmas List_cases [cases] = ListCase[unfolded ListCase_def] - - -section \Notation\ - -definition nil_i ("[]") - where [implicit]: "[] \ nil ?" - -definition cons_i (infixr "#" 120) - where [implicit]: "x # xs \ cons ? x xs" - -translations - "[]" \ "CONST List.nil A" - "x # xs" \ "CONST List.cons A x xs" -syntax - "_list" :: \args \ o\ ("[_]") -translations - "[x, xs]" \ "x # [xs]" - "[x]" \ "x # []" - - -section \Standard functions\ - -subsection \Head and tail\ - -Lemma (derive) head: - assumes "A: U i" "xs: List A" - shows "Maybe A" -proof (cases xs) - show "none: Maybe A" by intro - show "\x. x: A \ some x: Maybe A" by intro -qed - -Lemma (derive) tail: - assumes "A: U i" "xs: List A" - shows "List A" -proof (cases xs) - show "[]: List A" by intro - show "\xs. xs: List A \ xs: List A" . -qed - -definition head_i ("head") where [implicit]: "head xs \ List.head ? xs" -definition tail_i ("tail") where [implicit]: "tail xs \ List.tail ? xs" - -translations - "head" \ "CONST List.head A" - "tail" \ "CONST List.tail A" - -Lemma head_type [typechk]: - assumes "A: U i" "xs: List A" - shows "head xs: Maybe A" - unfolding head_def by typechk - -Lemma head_of_cons [comps]: - assumes "A: U i" "x: A" "xs: List A" - shows "head (x # xs) \ some x" - unfolding head_def ListCase_def by reduce - -Lemma tail_type [typechk]: - assumes "A: U i" "xs: List A" - shows "tail xs: List A" - unfolding tail_def by typechk - -Lemma tail_of_cons [comps]: - assumes "A: U i" "x: A" "xs: List A" - shows "tail (x # xs) \ xs" - unfolding tail_def ListCase_def by reduce - -subsection \Append\ - -Lemma (derive) app: - assumes "A: U i" "xs: List A" "ys: List A" - shows "List A" - apply (elim xs) - \ by (fact \ys:_\) - \ prems vars x _ rec - proof - show "x # rec: List A" by typechk qed - done - -definition app_i ("app") where [implicit]: "app xs ys \ List.app ? xs ys" - -translations "app" \ "CONST List.app A" - -subsection \Map\ - -Lemma (derive) map: - assumes "A: U i" "B: U i" "f: A \ B" "xs: List A" - shows "List B" -proof (elim xs) - show "[]: List B" by intro - next fix x ys - assume "x: A" "ys: List B" - show "f x # ys: List B" by typechk -qed - -definition map_i ("map") where [implicit]: "map \ List.map ? ?" - -translations "map" \ "CONST List.map A B" - -Lemma map_type [typechk]: - assumes "A: U i" "B: U i" "f: A \ B" "xs: List A" - shows "map f xs: List B" - unfolding map_def by typechk - - -subsection \Reverse\ - -Lemma (derive) rev: - assumes "A: U i" "xs: List A" - shows "List A" - apply (elim xs) - \ by (rule List_nil) - \ prems vars x _ rec proof - show "app rec [x]: List A" by typechk qed - done - -definition rev_i ("rev") where [implicit]: "rev \ List.rev ?" - -translations "rev" \ "CONST List.rev A" - -Lemma rev_type [typechk]: - assumes "A: U i" "xs: List A" - shows "rev xs: List A" - unfolding rev_def by typechk - -Lemma rev_nil [comps]: - assumes "A: U i" - shows "rev (nil A) \ nil A" - unfolding rev_def by reduce - - -end diff --git a/spartan/data/Maybe.thy b/spartan/data/Maybe.thy deleted file mode 100644 index 1efbb95..0000000 --- a/spartan/data/Maybe.thy +++ /dev/null @@ -1,76 +0,0 @@ -chapter \Maybe type\ - -theory Maybe -imports More_Types - -begin - -text \Defined as a sum.\ - -definition "Maybe A \ A \ \" -definition "none A \ inr A \ tt" -definition "some A a \ inl A \ a" - -lemma - MaybeF: "A: U i \ Maybe A: U i" and - Maybe_none: "A: U i \ none A: Maybe A" and - Maybe_some: "a: A \ some A a: Maybe A" - unfolding Maybe_def none_def some_def by typechk+ - -Lemma (derive) MaybeInd: - assumes - "A: U i" - "\m. m: Maybe A \ C m: U i" - "c\<^sub>0: C (none A)" - "\a. a: A \ f a: C (some A a)" - "m: Maybe A" - shows "?MaybeInd A (\m. C m) c\<^sub>0 (\a. f a) m: C m" - supply assms[unfolded Maybe_def none_def some_def] - apply (elim m) - \ unfolding Maybe_def . - \ by (rule \_ \ _: C (inl _ _ _)\) - \ by elim (rule \_: C (inr _ _ _)\) - done - -Lemma Maybe_comp_none: - assumes - "A: U i" - "c\<^sub>0: C (none A)" - "\a. a: A \ f a: C (some A a)" - "\m. m: Maybe A \ C m: U i" - shows "MaybeInd A (\m. C m) c\<^sub>0 (\a. f a) (none A) \ c\<^sub>0" - supply assms[unfolded Maybe_def some_def none_def] - unfolding MaybeInd_def none_def by reduce - -Lemma Maybe_comp_some: - assumes - "A: U i" - "a: A" - "c\<^sub>0: C (none A)" - "\a. a: A \ f a: C (some A a)" - "\m. m: Maybe A \ C m: U i" - shows "MaybeInd A (\m. C m) c\<^sub>0 (\a. f a) (some A a) \ f a" - supply assms[unfolded Maybe_def some_def none_def] - unfolding MaybeInd_def some_def by (reduce add: Maybe_def) - -lemmas - [intros] = MaybeF Maybe_none Maybe_some and - [comps] = Maybe_comp_none Maybe_comp_some and - MaybeE [elims "?m"] = MaybeInd[rotated 4] -lemmas - Maybe_cases [cases] = MaybeE - -abbreviation "MaybeRec A C \ MaybeInd A (K C)" - -definition none_i ("none") - where [implicit]: "none \ Maybe.none ?" - -definition some_i ("some") - where [implicit]: "some a \ Maybe.some ? a" - -translations - "none" \ "CONST Maybe.none A" - "some a" \ "CONST Maybe.some A a" - - -end diff --git a/spartan/data/More_Types.thy b/spartan/data/More_Types.thy deleted file mode 100644 index 1d7abb9..0000000 --- a/spartan/data/More_Types.thy +++ /dev/null @@ -1,104 +0,0 @@ -chapter \Some standard types\ - -theory More_Types -imports Spartan - -begin - -section \Sum type\ - -axiomatization - Sum :: \o \ o \ o\ and - inl :: \o \ o \ o \ o\ and - inr :: \o \ o \ o \ o\ and - SumInd :: \o \ o \ (o \ o) \ (o \ o) \ (o \ o) \ o \ o\ - -notation Sum (infixl "\" 50) - -axiomatization where - SumF: "\A: U i; B: U i\ \ A \ B: U i" and - - Sum_inl: "\a: A; B: U i\ \ inl A B a: A \ B" and - - Sum_inr: "\b: B; A: U i\ \ inr A B b: A \ B" and - - SumE: "\ - s: A \ B; - \s. s: A \ B \ C s: U i; - \a. a: A \ c a: C (inl A B a); - \b. b: B \ d b: C (inr A B b) - \ \ SumInd A B (\s. C s) (\a. c a) (\b. d b) s: C s" and - - Sum_comp_inl: "\ - a: A; - \s. s: A \ B \ C s: U i; - \a. a: A \ c a: C (inl A B a); - \b. b: B \ d b: C (inr A B b) - \ \ SumInd A B (\s. C s) (\a. c a) (\b. d b) (inl A B a) \ c a" and - - Sum_comp_inr: "\ - b: B; - \s. s: A \ B \ C s: U i; - \a. a: A \ c a: C (inl A B a); - \b. b: B \ d b: C (inr A B b) - \ \ SumInd A B (\s. C s) (\a. c a) (\b. d b) (inr A B b) \ d b" - -lemmas - [intros] = SumF Sum_inl Sum_inr and - [elims ?s] = SumE and - [comps] = Sum_comp_inl Sum_comp_inr - -method left = rule Sum_inl -method right = rule Sum_inr - - -section \Empty and unit types\ - -axiomatization - Top :: \o\ and - tt :: \o\ and - TopInd :: \(o \ o) \ o \ o \ o\ -and - Bot :: \o\ and - BotInd :: \(o \ o) \ o \ o\ - -notation Top ("\") and Bot ("\") - -axiomatization where - TopF: "\: U i" and - - TopI: "tt: \" and - - TopE: "\a: \; \x. x: \ \ C x: U i; c: C tt\ \ TopInd (\x. C x) c a: C a" and - - Top_comp: "\\x. x: \ \ C x: U i; c: C tt\ \ TopInd (\x. C x) c tt \ c" -and - BotF: "\: U i" and - - BotE: "\x: \; \x. x: \ \ C x: U i\ \ BotInd (\x. C x) x: C x" - -lemmas - [intros] = TopF TopI BotF and - [elims ?a] = TopE and - [elims ?x] = BotE and - [comps] = Top_comp - - -section \Booleans\ - -definition "Bool \ \ \ \" -definition "true \ inl \ \ tt" -definition "false \ inr \ \ tt" - -Lemma - BoolF: "Bool: U i" and - Bool_true: "true: Bool" and - Bool_false: "false: Bool" - unfolding Bool_def true_def false_def by typechk+ - -lemmas [intros] = BoolF Bool_true Bool_false - -\ \Can define if-then-else etc.\ - - -end -- cgit v1.2.3