From 0c786e631f32c1f92c508d3fe8aad6f433bb5ce0 Mon Sep 17 00:00:00 2001
From: Josh Chen
Date: Fri, 17 Aug 2018 14:20:39 +0200
Subject: Partway through updating proofs after the change of the function
 composition definition

---
 ProdProps.thy | 57 +++++++++++----------------------------------------------
 1 file changed, 11 insertions(+), 46 deletions(-)

diff --git a/ProdProps.thy b/ProdProps.thy
index e48b3e6..2145bf9 100644
--- a/ProdProps.thy
+++ b/ProdProps.thy
@@ -15,22 +15,18 @@ begin
 section \<open>Composition\<close>
 
 text "
-  The proof of associativity is surprisingly intricate; it involves telling Isabelle to use the correct rule for \<Pi>-type judgmental equality, and the correct substitutions in the subgoals thereafter, among other things.
+  The proof of associativity needs some guidance; it involves telling Isabelle to use the correct rule for \<Pi>-type definitional equality, and the correct substitutions in the subgoals thereafter.
 "
 
 lemma compose_assoc:
-  assumes
-    "A \<rightarrow> B: U(i)" "B \<rightarrow> C: U(i)" and
-    "\<Prod>x:C. D(x): U(i)" and
-    "f: A \<rightarrow> B" "g: B \<rightarrow> C" "h: \<Prod>x:C. D(x)"
+  assumes "A: U(i)" and "f: A \<rightarrow> B" "g: B \<rightarrow> C" "h: \<Prod>x:C. D(x)"
   shows "(h \<circ> g) \<circ> f \<equiv> h \<circ> (g \<circ> f)"
 
 proof (subst (0 1 2 3) compose_def)
-  text "Compute the different bracketings and show they are equivalent:"
-
   show "\<^bold>\<lambda>x. (\<^bold>\<lambda>y. h`(g`y))`(f`x) \<equiv> \<^bold>\<lambda>x. h`((\<^bold>\<lambda>y. g`(f`y))`x)"
   proof (subst Prod_eq)
-  show "\<^bold>\<lambda>x. h`((\<^bold>\<lambda>y. g`(f`y))`x) \<equiv> \<^bold>\<lambda>x. h`((\<^bold>\<lambda>y. g`(f`y))`x)" by simp
+    \<comment> \<open>Todo: set the Simplifier (or other simplification methods) up to use \<open>Prod_eq\<close>!\<close>
+    
     show "\<And>x. x: A \<Longrightarrow> (\<^bold>\<lambda>y. h`(g`y))`(f`x) \<equiv> h`((\<^bold>\<lambda>y. g`(f`y))`x)"
     proof compute
       show "\<And>x. x: A \<Longrightarrow> h`(g`(f`x)) \<equiv> h`((\<^bold>\<lambda>y. g`(f`y))`x)"
@@ -39,49 +35,18 @@ proof (subst (0 1 2 3) compose_def)
       qed
       show "\<And>x. x: B \<Longrightarrow> h`(g`x): D(g`x)" by (simple lems: assms)
     qed (simple lems: assms)
-  qed (wellformed lems: assms)
-
-  text "
-    Finish off any remaining subgoals that Isabelle can't prove automatically.
-    These typically require the application of specific substitutions or computation rules.
-  "
-  show "g \<circ> f: A \<rightarrow> C" by (subst compose_def) (derive lems: assms)
-
-  show "h \<circ> g: \<Prod>x:B. D(g`x)"
-  proof (subst compose_def)
-    show "\<^bold>\<lambda>x. h`(g`x): \<Prod>x:B. D(g`x)"
-    proof
-      show "\<And>x. x: B \<Longrightarrow> h`(g`x): D(g`x)"
-      proof
-        show "\<And>x. x: B \<Longrightarrow> g`x: C" by (simple lems: assms)
-      qed (simple lems: assms)
-    qed (wellformed lems: assms)
-  qed fact+
-  
-  show "\<Prod>x:B. D (g`x): U(i)"
-  proof
-    show "\<And>x. x: B \<Longrightarrow> D(g`x): U(i)"
-    proof -
-      have *: "D: C \<longrightarrow> U(i)" by (wellformed lems: assms)
-      
-      fix x assume asm: "x: B"
-      have "g`x: C" by (simple lems: assms asm)
-      then show "D(g`x): U(i)" by (rule *)
-    qed
-  qed (wellformed lems: assms)
-
-  have "A: U(i)" by (wellformed lems: assms)
-  moreover have "C: U(i)" by (wellformed lems: assms)
-  ultimately show "A \<rightarrow> C: U(i)" ..
-qed (simple lems: assms)
-
+  qed fact
+qed
 
-text "The following rule is correct, but we cannot prove it using just the rules of the theory."
 
 lemma compose_comp':
   assumes "A: U(i)" and "\<And>x. x: A \<Longrightarrow> b(x): B" and "\<And>x. x: B \<Longrightarrow> c(x): C(x)"
   shows "(\<^bold>\<lambda>x. c(x)) \<circ> (\<^bold>\<lambda>x. b(x)) \<equiv> \<^bold>\<lambda>x. c(b(x))"
-oops
+proof (subst compose_def, subst Prod_eq)
+  show "\<And>x. x: A \<Longrightarrow> (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`x) \<equiv> \<^bold>\<lambda>x. c (b x)"
+  proof compute
+    
+  
 
 text "However we can derive a variant with more explicit premises:"
 
-- 
cgit v1.2.3